Aromātai
0.62
Tauwehe
\frac{31}{2 \cdot 5 ^ {2}} = 0.62
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}\times \frac{9}{4}\times \left(\frac{2}{15}\right)^{2}+4.5\times \frac{2}{15}
Me tahuri ki tau ā-ira 2.25 ki te hautau \frac{225}{100}. Whakahekea te hautanga \frac{225}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{1\times 9}{2\times 4}\times \left(\frac{2}{15}\right)^{2}+4.5\times \frac{2}{15}
Me whakarea te \frac{1}{2} ki te \frac{9}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{9}{8}\times \left(\frac{2}{15}\right)^{2}+4.5\times \frac{2}{15}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 9}{2\times 4}.
\frac{9}{8}\times \frac{4}{225}+4.5\times \frac{2}{15}
Tātaihia te \frac{2}{15} mā te pū o 2, kia riro ko \frac{4}{225}.
\frac{9\times 4}{8\times 225}+4.5\times \frac{2}{15}
Me whakarea te \frac{9}{8} ki te \frac{4}{225} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{36}{1800}+4.5\times \frac{2}{15}
Mahia ngā whakarea i roto i te hautanga \frac{9\times 4}{8\times 225}.
\frac{1}{50}+4.5\times \frac{2}{15}
Whakahekea te hautanga \frac{36}{1800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 36.
\frac{1}{50}+\frac{9}{2}\times \frac{2}{15}
Me tahuri ki tau ā-ira 4.5 ki te hautau \frac{45}{10}. Whakahekea te hautanga \frac{45}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{50}+\frac{9\times 2}{2\times 15}
Me whakarea te \frac{9}{2} ki te \frac{2}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{50}+\frac{9}{15}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{1}{50}+\frac{3}{5}
Whakahekea te hautanga \frac{9}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{1}{50}+\frac{30}{50}
Ko te maha noa iti rawa atu o 50 me 5 ko 50. Me tahuri \frac{1}{50} me \frac{3}{5} ki te hautau me te tautūnga 50.
\frac{1+30}{50}
Tā te mea he rite te tauraro o \frac{1}{50} me \frac{30}{50}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{31}{50}
Tāpirihia te 1 ki te 30, ka 31.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}