Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{26}+\sqrt{6}}{2\times 2}\times \frac{\sqrt{26}-\sqrt{6}}{2}
Me whakarea te \frac{1}{2} ki te \frac{\sqrt{26}+\sqrt{6}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(\sqrt{26}+\sqrt{6}\right)\left(\sqrt{26}-\sqrt{6}\right)}{2\times 2\times 2}
Me whakarea te \frac{\sqrt{26}+\sqrt{6}}{2\times 2} ki te \frac{\sqrt{26}-\sqrt{6}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(\sqrt{26}\right)^{2}-\left(\sqrt{6}\right)^{2}}{2\times 2\times 2}
Whakaarohia te \left(\sqrt{26}+\sqrt{6}\right)\left(\sqrt{26}-\sqrt{6}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{26-\left(\sqrt{6}\right)^{2}}{2\times 2\times 2}
Ko te pūrua o \sqrt{26} ko 26.
\frac{26-6}{2\times 2\times 2}
Ko te pūrua o \sqrt{6} ko 6.
\frac{20}{2\times 2\times 2}
Tangohia te 6 i te 26, ka 20.
\frac{20}{4\times 2}
Whakareatia te 2 ki te 2, ka 4.
\frac{20}{8}
Whakareatia te 4 ki te 2, ka 8.
\frac{5}{2}
Whakahekea te hautanga \frac{20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.