Aromātai
\frac{5}{2}=2.5
Tauwehe
\frac{5}{2} = 2\frac{1}{2} = 2.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{26}+\sqrt{6}}{2\times 2}\times \frac{\sqrt{26}-\sqrt{6}}{2}
Me whakarea te \frac{1}{2} ki te \frac{\sqrt{26}+\sqrt{6}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(\sqrt{26}+\sqrt{6}\right)\left(\sqrt{26}-\sqrt{6}\right)}{2\times 2\times 2}
Me whakarea te \frac{\sqrt{26}+\sqrt{6}}{2\times 2} ki te \frac{\sqrt{26}-\sqrt{6}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(\sqrt{26}\right)^{2}-\left(\sqrt{6}\right)^{2}}{2\times 2\times 2}
Whakaarohia te \left(\sqrt{26}+\sqrt{6}\right)\left(\sqrt{26}-\sqrt{6}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{26-\left(\sqrt{6}\right)^{2}}{2\times 2\times 2}
Ko te pūrua o \sqrt{26} ko 26.
\frac{26-6}{2\times 2\times 2}
Ko te pūrua o \sqrt{6} ko 6.
\frac{20}{2\times 2\times 2}
Tangohia te 6 i te 26, ka 20.
\frac{20}{4\times 2}
Whakareatia te 2 ki te 2, ka 4.
\frac{20}{8}
Whakareatia te 4 ki te 2, ka 8.
\frac{5}{2}
Whakahekea te hautanga \frac{20}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}