Aromātai
\frac{13}{12}\approx 1.083333333
Tauwehe
\frac{13}{2 ^ {2} \cdot 3} = 1\frac{1}{12} = 1.0833333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}\left(\frac{\frac{4}{3}\times \frac{6+1}{2}}{\frac{7}{4}}-\frac{1}{2}\right)
Whakareatia te 3 ki te 2, ka 6.
\frac{1}{2}\left(\frac{\frac{4}{3}\times \frac{7}{2}}{\frac{7}{4}}-\frac{1}{2}\right)
Tāpirihia te 6 ki te 1, ka 7.
\frac{1}{2}\left(\frac{\frac{4\times 7}{3\times 2}}{\frac{7}{4}}-\frac{1}{2}\right)
Me whakarea te \frac{4}{3} ki te \frac{7}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}\left(\frac{\frac{28}{6}}{\frac{7}{4}}-\frac{1}{2}\right)
Mahia ngā whakarea i roto i te hautanga \frac{4\times 7}{3\times 2}.
\frac{1}{2}\left(\frac{\frac{14}{3}}{\frac{7}{4}}-\frac{1}{2}\right)
Whakahekea te hautanga \frac{28}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{2}\left(\frac{14}{3}\times \frac{4}{7}-\frac{1}{2}\right)
Whakawehe \frac{14}{3} ki te \frac{7}{4} mā te whakarea \frac{14}{3} ki te tau huripoki o \frac{7}{4}.
\frac{1}{2}\left(\frac{14\times 4}{3\times 7}-\frac{1}{2}\right)
Me whakarea te \frac{14}{3} ki te \frac{4}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{2}\left(\frac{56}{21}-\frac{1}{2}\right)
Mahia ngā whakarea i roto i te hautanga \frac{14\times 4}{3\times 7}.
\frac{1}{2}\left(\frac{8}{3}-\frac{1}{2}\right)
Whakahekea te hautanga \frac{56}{21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{1}{2}\left(\frac{16}{6}-\frac{3}{6}\right)
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{8}{3} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{1}{2}\times \frac{16-3}{6}
Tā te mea he rite te tauraro o \frac{16}{6} me \frac{3}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}\times \frac{13}{6}
Tangohia te 3 i te 16, ka 13.
\frac{1\times 13}{2\times 6}
Me whakarea te \frac{1}{2} ki te \frac{13}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{13}{12}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 13}{2\times 6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}