Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{1}{2}\times 4\sqrt{3}}{3\sqrt{2}-\sqrt{3}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{\frac{4}{2}\sqrt{3}}{3\sqrt{2}-\sqrt{3}}
Whakareatia te \frac{1}{2} ki te 4, ka \frac{4}{2}.
\frac{2\sqrt{3}}{3\sqrt{2}-\sqrt{3}}
Whakawehea te 4 ki te 2, kia riro ko 2.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{2\sqrt{3}}{3\sqrt{2}-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 3\sqrt{2}+\sqrt{3}.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(3\sqrt{2}\right)^{2}.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{9\times 2-\left(\sqrt{3}\right)^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{18-\left(\sqrt{3}\right)^{2}}
Whakareatia te 9 ki te 2, ka 18.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{18-3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{3}\left(3\sqrt{2}+\sqrt{3}\right)}{15}
Tangohia te 3 i te 18, ka 15.
\frac{6\sqrt{3}\sqrt{2}+2\left(\sqrt{3}\right)^{2}}{15}
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{3} ki te 3\sqrt{2}+\sqrt{3}.
\frac{6\sqrt{6}+2\left(\sqrt{3}\right)^{2}}{15}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{6\sqrt{6}+2\times 3}{15}
Ko te pūrua o \sqrt{3} ko 3.
\frac{6\sqrt{6}+6}{15}
Whakareatia te 2 ki te 3, ka 6.