Aromātai (complex solution)
\frac{8}{15}i\approx 0.533333333i
Wāhi Tūturu (complex solution)
0
Aromātai
\text{Indeterminate}
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}\times \left(2i\right)+\frac{2}{5}\sqrt{-9}-\frac{1}{3}\sqrt{-25}
Tātaitia te pūtakerua o -4 kia tae ki 2i.
i+\frac{2}{5}\sqrt{-9}-\frac{1}{3}\sqrt{-25}
Whakareatia te \frac{1}{2} ki te 2i, ka i.
i+\frac{2}{5}\times \left(3i\right)-\frac{1}{3}\sqrt{-25}
Tātaitia te pūtakerua o -9 kia tae ki 3i.
i+\frac{6}{5}i-\frac{1}{3}\sqrt{-25}
Whakareatia te \frac{2}{5} ki te 3i, ka \frac{6}{5}i.
\frac{11}{5}i-\frac{1}{3}\sqrt{-25}
Tāpirihia te i ki te \frac{6}{5}i, ka \frac{11}{5}i.
\frac{11}{5}i-\frac{1}{3}\times \left(5i\right)
Tātaitia te pūtakerua o -25 kia tae ki 5i.
\frac{11}{5}i-\frac{5}{3}i
Whakareatia te -\frac{1}{3} ki te 5i, ka -\frac{5}{3}i.
\frac{8}{15}i
Tangohia te \frac{5}{3}i i te \frac{11}{5}i, ka \frac{8}{15}i.
Re(\frac{1}{2}\times \left(2i\right)+\frac{2}{5}\sqrt{-9}-\frac{1}{3}\sqrt{-25})
Tātaitia te pūtakerua o -4 kia tae ki 2i.
Re(i+\frac{2}{5}\sqrt{-9}-\frac{1}{3}\sqrt{-25})
Whakareatia te \frac{1}{2} ki te 2i, ka i.
Re(i+\frac{2}{5}\times \left(3i\right)-\frac{1}{3}\sqrt{-25})
Tātaitia te pūtakerua o -9 kia tae ki 3i.
Re(i+\frac{6}{5}i-\frac{1}{3}\sqrt{-25})
Whakareatia te \frac{2}{5} ki te 3i, ka \frac{6}{5}i.
Re(\frac{11}{5}i-\frac{1}{3}\sqrt{-25})
Tāpirihia te i ki te \frac{6}{5}i, ka \frac{11}{5}i.
Re(\frac{11}{5}i-\frac{1}{3}\times \left(5i\right))
Tātaitia te pūtakerua o -25 kia tae ki 5i.
Re(\frac{11}{5}i-\frac{5}{3}i)
Whakareatia te -\frac{1}{3} ki te 5i, ka -\frac{5}{3}i.
Re(\frac{8}{15}i)
Tangohia te \frac{5}{3}i i te \frac{11}{5}i, ka \frac{8}{15}i.
0
Ko te wāhi tūturu o \frac{8}{15}i ko 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}