Whakaoti mō t
t=10
t=0
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{2}t^{2}=15t
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
\frac{3}{2}t^{2}-15t=0
Tangohia te 15t mai i ngā taha e rua.
t\left(\frac{3}{2}t-15\right)=0
Tauwehea te t.
t=0 t=10
Hei kimi otinga whārite, me whakaoti te t=0 me te \frac{3t}{2}-15=0.
\frac{3}{2}t^{2}=15t
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
\frac{3}{2}t^{2}-15t=0
Tangohia te 15t mai i ngā taha e rua.
t=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times \frac{3}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{3}{2} mō a, -15 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-15\right)±15}{2\times \frac{3}{2}}
Tuhia te pūtakerua o te \left(-15\right)^{2}.
t=\frac{15±15}{2\times \frac{3}{2}}
Ko te tauaro o -15 ko 15.
t=\frac{15±15}{3}
Whakareatia 2 ki te \frac{3}{2}.
t=\frac{30}{3}
Nā, me whakaoti te whārite t=\frac{15±15}{3} ina he tāpiri te ±. Tāpiri 15 ki te 15.
t=10
Whakawehe 30 ki te 3.
t=\frac{0}{3}
Nā, me whakaoti te whārite t=\frac{15±15}{3} ina he tango te ±. Tango 15 mai i 15.
t=0
Whakawehe 0 ki te 3.
t=10 t=0
Kua oti te whārite te whakatau.
\frac{3}{2}t^{2}=15t
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
\frac{3}{2}t^{2}-15t=0
Tangohia te 15t mai i ngā taha e rua.
\frac{\frac{3}{2}t^{2}-15t}{\frac{3}{2}}=\frac{0}{\frac{3}{2}}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
t^{2}+\left(-\frac{15}{\frac{3}{2}}\right)t=\frac{0}{\frac{3}{2}}
Mā te whakawehe ki te \frac{3}{2} ka wetekia te whakareanga ki te \frac{3}{2}.
t^{2}-10t=\frac{0}{\frac{3}{2}}
Whakawehe -15 ki te \frac{3}{2} mā te whakarea -15 ki te tau huripoki o \frac{3}{2}.
t^{2}-10t=0
Whakawehe 0 ki te \frac{3}{2} mā te whakarea 0 ki te tau huripoki o \frac{3}{2}.
t^{2}-10t+\left(-5\right)^{2}=\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-10t+25=25
Pūrua -5.
\left(t-5\right)^{2}=25
Tauwehea t^{2}-10t+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-5\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-5=5 t-5=-5
Whakarūnātia.
t=10 t=0
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}