Whakaoti mō x
x=19
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x+\frac{1}{2}-\frac{\frac{4}{3}}{\frac{1}{6}}=2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te x+1.
\frac{1}{2}x+\frac{1}{2}-\frac{4}{3}\times 6=2
Whakawehe \frac{4}{3} ki te \frac{1}{6} mā te whakarea \frac{4}{3} ki te tau huripoki o \frac{1}{6}.
\frac{1}{2}x+\frac{1}{2}-\frac{4\times 6}{3}=2
Tuhia te \frac{4}{3}\times 6 hei hautanga kotahi.
\frac{1}{2}x+\frac{1}{2}-\frac{24}{3}=2
Whakareatia te 4 ki te 6, ka 24.
\frac{1}{2}x+\frac{1}{2}-8=2
Whakawehea te 24 ki te 3, kia riro ko 8.
\frac{1}{2}x+\frac{1}{2}-\frac{16}{2}=2
Me tahuri te 8 ki te hautau \frac{16}{2}.
\frac{1}{2}x+\frac{1-16}{2}=2
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{16}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}x-\frac{15}{2}=2
Tangohia te 16 i te 1, ka -15.
\frac{1}{2}x=2+\frac{15}{2}
Me tāpiri te \frac{15}{2} ki ngā taha e rua.
\frac{1}{2}x=\frac{4}{2}+\frac{15}{2}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{1}{2}x=\frac{4+15}{2}
Tā te mea he rite te tauraro o \frac{4}{2} me \frac{15}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}x=\frac{19}{2}
Tāpirihia te 4 ki te 15, ka 19.
x=\frac{19}{2}\times 2
Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}.
x=19
Me whakakore te 2 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}