Aromātai
\frac{5}{8}=0.625
Tauwehe
\frac{5}{2 ^ {3}} = 0.625
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}\left(\frac{4}{4}-\frac{3}{4}\right)-2\left(\frac{3}{4}-1\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{1}{2}\times \frac{4-3}{4}-2\left(\frac{3}{4}-1\right)
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}\times \frac{1}{4}-2\left(\frac{3}{4}-1\right)
Tangohia te 3 i te 4, ka 1.
\frac{1\times 1}{2\times 4}-2\left(\frac{3}{4}-1\right)
Me whakarea te \frac{1}{2} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{8}-2\left(\frac{3}{4}-1\right)
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{2\times 4}.
\frac{1}{8}-2\left(\frac{3}{4}-\frac{4}{4}\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{1}{8}-2\times \frac{3-4}{4}
Tā te mea he rite te tauraro o \frac{3}{4} me \frac{4}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{8}-2\left(-\frac{1}{4}\right)
Tangohia te 4 i te 3, ka -1.
\frac{1}{8}-\frac{2\left(-1\right)}{4}
Tuhia te 2\left(-\frac{1}{4}\right) hei hautanga kotahi.
\frac{1}{8}-\frac{-2}{4}
Whakareatia te 2 ki te -1, ka -2.
\frac{1}{8}-\left(-\frac{1}{2}\right)
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{8}+\frac{1}{2}
Ko te tauaro o -\frac{1}{2} ko \frac{1}{2}.
\frac{1}{8}+\frac{4}{8}
Ko te maha noa iti rawa atu o 8 me 2 ko 8. Me tahuri \frac{1}{8} me \frac{1}{2} ki te hautau me te tautūnga 8.
\frac{1+4}{8}
Tā te mea he rite te tauraro o \frac{1}{8} me \frac{4}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{8}
Tāpirihia te 1 ki te 4, ka 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}