Whakaoti mō z
z=3
Tohaina
Kua tāruatia ki te papatopenga
6\left(1+\frac{1}{4}\left(3z-1\right)\right)=4\times 2z-6
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,4,3.
6\left(1+\frac{1}{4}\times 3z+\frac{1}{4}\left(-1\right)\right)=4\times 2z-6
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te 3z-1.
6\left(1+\frac{3}{4}z+\frac{1}{4}\left(-1\right)\right)=4\times 2z-6
Whakareatia te \frac{1}{4} ki te 3, ka \frac{3}{4}.
6\left(1+\frac{3}{4}z-\frac{1}{4}\right)=4\times 2z-6
Whakareatia te \frac{1}{4} ki te -1, ka -\frac{1}{4}.
6\left(\frac{4}{4}+\frac{3}{4}z-\frac{1}{4}\right)=4\times 2z-6
Me tahuri te 1 ki te hautau \frac{4}{4}.
6\left(\frac{4-1}{4}+\frac{3}{4}z\right)=4\times 2z-6
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
6\left(\frac{3}{4}+\frac{3}{4}z\right)=4\times 2z-6
Tangohia te 1 i te 4, ka 3.
6\times \frac{3}{4}+6\times \frac{3}{4}z=4\times 2z-6
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te \frac{3}{4}+\frac{3}{4}z.
\frac{6\times 3}{4}+6\times \frac{3}{4}z=4\times 2z-6
Tuhia te 6\times \frac{3}{4} hei hautanga kotahi.
\frac{18}{4}+6\times \frac{3}{4}z=4\times 2z-6
Whakareatia te 6 ki te 3, ka 18.
\frac{9}{2}+6\times \frac{3}{4}z=4\times 2z-6
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{9}{2}+\frac{6\times 3}{4}z=4\times 2z-6
Tuhia te 6\times \frac{3}{4} hei hautanga kotahi.
\frac{9}{2}+\frac{18}{4}z=4\times 2z-6
Whakareatia te 6 ki te 3, ka 18.
\frac{9}{2}+\frac{9}{2}z=4\times 2z-6
Whakahekea te hautanga \frac{18}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{9}{2}+\frac{9}{2}z=8z-6
Whakareatia te 4 ki te 2, ka 8.
\frac{9}{2}+\frac{9}{2}z-8z=-6
Tangohia te 8z mai i ngā taha e rua.
\frac{9}{2}-\frac{7}{2}z=-6
Pahekotia te \frac{9}{2}z me -8z, ka -\frac{7}{2}z.
-\frac{7}{2}z=-6-\frac{9}{2}
Tangohia te \frac{9}{2} mai i ngā taha e rua.
-\frac{7}{2}z=-\frac{12}{2}-\frac{9}{2}
Me tahuri te -6 ki te hautau -\frac{12}{2}.
-\frac{7}{2}z=\frac{-12-9}{2}
Tā te mea he rite te tauraro o -\frac{12}{2} me \frac{9}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{7}{2}z=-\frac{21}{2}
Tangohia te 9 i te -12, ka -21.
z=-\frac{21}{2}\left(-\frac{2}{7}\right)
Me whakarea ngā taha e rua ki te -\frac{2}{7}, te tau utu o -\frac{7}{2}.
z=\frac{-21\left(-2\right)}{2\times 7}
Me whakarea te -\frac{21}{2} ki te -\frac{2}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
z=\frac{42}{14}
Mahia ngā whakarea i roto i te hautanga \frac{-21\left(-2\right)}{2\times 7}.
z=3
Whakawehea te 42 ki te 14, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}