Tīpoka ki ngā ihirangi matua
Whakaoti mō v
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-\frac{4}{3}v-\frac{3}{5}=\frac{1}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{4}{3}v=\frac{1}{2}+\frac{3}{5}
Me tāpiri te \frac{3}{5} ki ngā taha e rua.
-\frac{4}{3}v=\frac{5}{10}+\frac{6}{10}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{1}{2} me \frac{3}{5} ki te hautau me te tautūnga 10.
-\frac{4}{3}v=\frac{5+6}{10}
Tā te mea he rite te tauraro o \frac{5}{10} me \frac{6}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{4}{3}v=\frac{11}{10}
Tāpirihia te 5 ki te 6, ka 11.
v=\frac{11}{10}\left(-\frac{3}{4}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{4}, te tau utu o -\frac{4}{3}.
v=\frac{11\left(-3\right)}{10\times 4}
Me whakarea te \frac{11}{10} ki te -\frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
v=\frac{-33}{40}
Mahia ngā whakarea i roto i te hautanga \frac{11\left(-3\right)}{10\times 4}.
v=-\frac{33}{40}
Ka taea te hautanga \frac{-33}{40} te tuhi anō ko -\frac{33}{40} mā te tango i te tohu tōraro.