Whakaoti mō v
v=-\frac{33}{40}=-0.825
Tohaina
Kua tāruatia ki te papatopenga
-\frac{4}{3}v-\frac{3}{5}=\frac{1}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{4}{3}v=\frac{1}{2}+\frac{3}{5}
Me tāpiri te \frac{3}{5} ki ngā taha e rua.
-\frac{4}{3}v=\frac{5}{10}+\frac{6}{10}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{1}{2} me \frac{3}{5} ki te hautau me te tautūnga 10.
-\frac{4}{3}v=\frac{5+6}{10}
Tā te mea he rite te tauraro o \frac{5}{10} me \frac{6}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{4}{3}v=\frac{11}{10}
Tāpirihia te 5 ki te 6, ka 11.
v=\frac{11}{10}\left(-\frac{3}{4}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{4}, te tau utu o -\frac{4}{3}.
v=\frac{11\left(-3\right)}{10\times 4}
Me whakarea te \frac{11}{10} ki te -\frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
v=\frac{-33}{40}
Mahia ngā whakarea i roto i te hautanga \frac{11\left(-3\right)}{10\times 4}.
v=-\frac{33}{40}
Ka taea te hautanga \frac{-33}{40} te tuhi anō ko -\frac{33}{40} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}