Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a=2\sqrt{a^{2}-3}
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2a, arā, te tauraro pātahi he tino iti rawa te kitea o 2,a.
a-2\sqrt{a^{2}-3}=0
Tangohia te 2\sqrt{a^{2}-3} mai i ngā taha e rua.
-2\sqrt{a^{2}-3}=-a
Me tango a mai i ngā taha e rua o te whārite.
\left(-2\sqrt{a^{2}-3}\right)^{2}=\left(-a\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-2\right)^{2}\left(\sqrt{a^{2}-3}\right)^{2}=\left(-a\right)^{2}
Whakarohaina te \left(-2\sqrt{a^{2}-3}\right)^{2}.
4\left(\sqrt{a^{2}-3}\right)^{2}=\left(-a\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4\left(a^{2}-3\right)=\left(-a\right)^{2}
Tātaihia te \sqrt{a^{2}-3} mā te pū o 2, kia riro ko a^{2}-3.
4a^{2}-12=\left(-a\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te a^{2}-3.
4a^{2}-12=\left(-1\right)^{2}a^{2}
Whakarohaina te \left(-a\right)^{2}.
4a^{2}-12=1a^{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
4a^{2}-12-a^{2}=0
Tangohia te 1a^{2} mai i ngā taha e rua.
3a^{2}-12=0
Pahekotia te 4a^{2} me -a^{2}, ka 3a^{2}.
a^{2}-4=0
Whakawehea ngā taha e rua ki te 3.
\left(a-2\right)\left(a+2\right)=0
Whakaarohia te a^{2}-4. Tuhia anō te a^{2}-4 hei a^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=2 a=-2
Hei kimi otinga whārite, me whakaoti te a-2=0 me te a+2=0.
\frac{1}{2}=\frac{\sqrt{2^{2}-3}}{2}
Whakakapia te 2 mō te a i te whārite \frac{1}{2}=\frac{\sqrt{a^{2}-3}}{a}.
\frac{1}{2}=\frac{1}{2}
Whakarūnātia. Ko te uara a=2 kua ngata te whārite.
\frac{1}{2}=\frac{\sqrt{\left(-2\right)^{2}-3}}{-2}
Whakakapia te -2 mō te a i te whārite \frac{1}{2}=\frac{\sqrt{a^{2}-3}}{a}.
\frac{1}{2}=-\frac{1}{2}
Whakarūnātia. Ko te uara a=-2 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
a=2
Ko te whārite -2\sqrt{a^{2}-3}=-a he rongoā ahurei.