Aromātai
\frac{6}{7}\approx 0.857142857
Tauwehe
\frac{2 \cdot 3}{7} = 0.8571428571428571
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 1 } { 2 } : ( \frac { 1 } { 4 } + \frac { 1 } { 3 } ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{2}}{\frac{3}{12}+\frac{4}{12}}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{1}{4} me \frac{1}{3} ki te hautau me te tautūnga 12.
\frac{\frac{1}{2}}{\frac{3+4}{12}}
Tā te mea he rite te tauraro o \frac{3}{12} me \frac{4}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{1}{2}}{\frac{7}{12}}
Tāpirihia te 3 ki te 4, ka 7.
\frac{1}{2}\times \frac{12}{7}
Whakawehe \frac{1}{2} ki te \frac{7}{12} mā te whakarea \frac{1}{2} ki te tau huripoki o \frac{7}{12}.
\frac{1\times 12}{2\times 7}
Me whakarea te \frac{1}{2} ki te \frac{12}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{12}{14}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 12}{2\times 7}.
\frac{6}{7}
Whakahekea te hautanga \frac{12}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}