Aromātai
\frac{7}{3}\approx 2.333333333
Tauwehe
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}+\frac{2}{3}-\frac{6}{12}+\frac{1\times 3+2}{3}
Whakareatia te 1 ki te \frac{2}{3}, ka \frac{2}{3}.
\frac{3}{6}+\frac{4}{6}-\frac{6}{12}+\frac{1\times 3+2}{3}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
\frac{3+4}{6}-\frac{6}{12}+\frac{1\times 3+2}{3}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{4}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{6}-\frac{6}{12}+\frac{1\times 3+2}{3}
Tāpirihia te 3 ki te 4, ka 7.
\frac{7}{6}-\frac{1}{2}+\frac{1\times 3+2}{3}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{7}{6}-\frac{3}{6}+\frac{1\times 3+2}{3}
Ko te maha noa iti rawa atu o 6 me 2 ko 6. Me tahuri \frac{7}{6} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{7-3}{6}+\frac{1\times 3+2}{3}
Tā te mea he rite te tauraro o \frac{7}{6} me \frac{3}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{4}{6}+\frac{1\times 3+2}{3}
Tangohia te 3 i te 7, ka 4.
\frac{2}{3}+\frac{1\times 3+2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2}{3}+\frac{3+2}{3}
Whakareatia te 1 ki te 3, ka 3.
\frac{2}{3}+\frac{5}{3}
Tāpirihia te 3 ki te 2, ka 5.
\frac{2+5}{3}
Tā te mea he rite te tauraro o \frac{2}{3} me \frac{5}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{3}
Tāpirihia te 2 ki te 5, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}