Aromātai
-\frac{1}{5}=-0.2
Tauwehe
-\frac{1}{5} = -0.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{6}-\frac{4}{6}+\frac{4}{5}-\frac{1}{2}-\frac{1}{3}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
\frac{3-4}{6}+\frac{4}{5}-\frac{1}{2}-\frac{1}{3}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{4}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{6}+\frac{4}{5}-\frac{1}{2}-\frac{1}{3}
Tangohia te 4 i te 3, ka -1.
-\frac{5}{30}+\frac{24}{30}-\frac{1}{2}-\frac{1}{3}
Ko te maha noa iti rawa atu o 6 me 5 ko 30. Me tahuri -\frac{1}{6} me \frac{4}{5} ki te hautau me te tautūnga 30.
\frac{-5+24}{30}-\frac{1}{2}-\frac{1}{3}
Tā te mea he rite te tauraro o -\frac{5}{30} me \frac{24}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{19}{30}-\frac{1}{2}-\frac{1}{3}
Tāpirihia te -5 ki te 24, ka 19.
\frac{19}{30}-\frac{15}{30}-\frac{1}{3}
Ko te maha noa iti rawa atu o 30 me 2 ko 30. Me tahuri \frac{19}{30} me \frac{1}{2} ki te hautau me te tautūnga 30.
\frac{19-15}{30}-\frac{1}{3}
Tā te mea he rite te tauraro o \frac{19}{30} me \frac{15}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{4}{30}-\frac{1}{3}
Tangohia te 15 i te 19, ka 4.
\frac{2}{15}-\frac{1}{3}
Whakahekea te hautanga \frac{4}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{2}{15}-\frac{5}{15}
Ko te maha noa iti rawa atu o 15 me 3 ko 15. Me tahuri \frac{2}{15} me \frac{1}{3} ki te hautau me te tautūnga 15.
\frac{2-5}{15}
Tā te mea he rite te tauraro o \frac{2}{15} me \frac{5}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{-3}{15}
Tangohia te 5 i te 2, ka -3.
-\frac{1}{5}
Whakahekea te hautanga \frac{-3}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}