Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{7}{14}+\frac{4}{14}=\frac{7}{14}+\frac{4}{74}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Ko te maha noa iti rawa atu o 2 me 7 ko 14. Me tahuri \frac{1}{2} me \frac{2}{7} ki te hautau me te tautūnga 14.
\frac{7+4}{14}=\frac{7}{14}+\frac{4}{74}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Tā te mea he rite te tauraro o \frac{7}{14} me \frac{4}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{14}=\frac{7}{14}+\frac{4}{74}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Tāpirihia te 7 ki te 4, ka 11.
\frac{11}{14}=\frac{1}{2}+\frac{4}{74}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Whakahekea te hautanga \frac{7}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{11}{14}=\frac{1}{2}+\frac{2}{37}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Whakahekea te hautanga \frac{4}{74} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{11}{14}=\frac{37}{74}+\frac{4}{74}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Ko te maha noa iti rawa atu o 2 me 37 ko 74. Me tahuri \frac{1}{2} me \frac{2}{37} ki te hautau me te tautūnga 74.
\frac{11}{14}=\frac{37+4}{74}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Tā te mea he rite te tauraro o \frac{37}{74} me \frac{4}{74}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{14}=\frac{41}{74}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Tāpirihia te 37 ki te 4, ka 41.
\frac{407}{518}=\frac{287}{518}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Ko te maha noa iti rawa atu o 14 me 74 ko 518. Me tahuri \frac{11}{14} me \frac{41}{74} ki te hautau me te tautūnga 518.
\text{false}\text{ and }\frac{7}{14}+\frac{4}{74}=\frac{11}{14}
Whakatauritea te \frac{407}{518} me te \frac{287}{518}.
\text{false}\text{ and }\frac{1}{2}+\frac{4}{74}=\frac{11}{14}
Whakahekea te hautanga \frac{7}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\text{false}\text{ and }\frac{1}{2}+\frac{2}{37}=\frac{11}{14}
Whakahekea te hautanga \frac{4}{74} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\text{false}\text{ and }\frac{37}{74}+\frac{4}{74}=\frac{11}{14}
Ko te maha noa iti rawa atu o 2 me 37 ko 74. Me tahuri \frac{1}{2} me \frac{2}{37} ki te hautau me te tautūnga 74.
\text{false}\text{ and }\frac{37+4}{74}=\frac{11}{14}
Tā te mea he rite te tauraro o \frac{37}{74} me \frac{4}{74}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\text{false}\text{ and }\frac{41}{74}=\frac{11}{14}
Tāpirihia te 37 ki te 4, ka 41.
\text{false}\text{ and }\frac{287}{518}=\frac{407}{518}
Ko te maha noa iti rawa atu o 74 me 14 ko 518. Me tahuri \frac{41}{74} me \frac{11}{14} ki te hautau me te tautūnga 518.
\text{false}\text{ and }\text{false}
Whakatauritea te \frac{287}{518} me te \frac{407}{518}.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}