Aromātai
\frac{6}{7}\approx 0.857142857
Tauwehe
\frac{2 \cdot 3}{7} = 0.8571428571428571
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{6}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{1}{2} me \frac{1}{6} ki te hautau me te tautūnga 6.
\frac{3+1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
Tāpirihia te 3 ki te 1, ka 4.
\frac{2}{3}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{8}{12}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
Ko te maha noa iti rawa atu o 3 me 12 ko 12. Me tahuri \frac{2}{3} me \frac{1}{12} ki te hautau me te tautūnga 12.
\frac{8+1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{1}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
Tāpirihia te 8 ki te 1, ka 9.
\frac{3}{4}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
Whakahekea te hautanga \frac{9}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{15}{20}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
Ko te maha noa iti rawa atu o 4 me 20 ko 20. Me tahuri \frac{3}{4} me \frac{1}{20} ki te hautau me te tautūnga 20.
\frac{15+1}{20}+\frac{1}{30}+\frac{1}{42}
Tā te mea he rite te tauraro o \frac{15}{20} me \frac{1}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{16}{20}+\frac{1}{30}+\frac{1}{42}
Tāpirihia te 15 ki te 1, ka 16.
\frac{4}{5}+\frac{1}{30}+\frac{1}{42}
Whakahekea te hautanga \frac{16}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{24}{30}+\frac{1}{30}+\frac{1}{42}
Ko te maha noa iti rawa atu o 5 me 30 ko 30. Me tahuri \frac{4}{5} me \frac{1}{30} ki te hautau me te tautūnga 30.
\frac{24+1}{30}+\frac{1}{42}
Tā te mea he rite te tauraro o \frac{24}{30} me \frac{1}{30}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{25}{30}+\frac{1}{42}
Tāpirihia te 24 ki te 1, ka 25.
\frac{5}{6}+\frac{1}{42}
Whakahekea te hautanga \frac{25}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{35}{42}+\frac{1}{42}
Ko te maha noa iti rawa atu o 6 me 42 ko 42. Me tahuri \frac{5}{6} me \frac{1}{42} ki te hautau me te tautūnga 42.
\frac{35+1}{42}
Tā te mea he rite te tauraro o \frac{35}{42} me \frac{1}{42}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{36}{42}
Tāpirihia te 35 ki te 1, ka 36.
\frac{6}{7}
Whakahekea te hautanga \frac{36}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}