\frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } | + | \frac { 1 } { 3 } + \frac { 1 } { 2 } - 1 |
Aromātai
\frac{19}{24}\approx 0.791666667
Tauwehe
\frac{19}{2 ^ {3} \cdot 3} = 0.7916666666666666
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{6}+\frac{2}{6}-\frac{1}{4}||\frac{1}{3}+\frac{1}{2}-1||
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{3+2}{6}-\frac{1}{4}||\frac{1}{3}+\frac{1}{2}-1||
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{6}-\frac{1}{4}||\frac{1}{3}+\frac{1}{2}-1||
Tāpirihia te 3 ki te 2, ka 5.
\frac{5}{6}-\frac{1}{4}||\frac{2}{6}+\frac{3}{6}-1||
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{1}{3} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{5}{6}-\frac{1}{4}||\frac{2+3}{6}-1||
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{5}{6}-\frac{1}{4}||\frac{5}{6}-1||
Tāpirihia te 2 ki te 3, ka 5.
\frac{5}{6}-\frac{1}{4}||\frac{5}{6}-\frac{6}{6}||
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{5}{6}-\frac{1}{4}||\frac{5-6}{6}||
Tā te mea he rite te tauraro o \frac{5}{6} me \frac{6}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{6}-\frac{1}{4}||-\frac{1}{6}||
Tangohia te 6 i te 5, ka -1.
\frac{5}{6}-\frac{1}{4}|\frac{1}{6}|
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{1}{6} ko \frac{1}{6}.
\frac{5}{6}-\frac{1}{4}\times \frac{1}{6}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o \frac{1}{6} ko \frac{1}{6}.
\frac{5}{6}-\frac{1\times 1}{4\times 6}
Me whakarea te \frac{1}{4} ki te \frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5}{6}-\frac{1}{24}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 1}{4\times 6}.
\frac{20}{24}-\frac{1}{24}
Ko te maha noa iti rawa atu o 6 me 24 ko 24. Me tahuri \frac{5}{6} me \frac{1}{24} ki te hautau me te tautūnga 24.
\frac{20-1}{24}
Tā te mea he rite te tauraro o \frac{20}{24} me \frac{1}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{19}{24}
Tangohia te 1 i te 20, ka 19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}