Aromātai
\frac{61}{144}\approx 0.423611111
Tauwehe
\frac{61}{2 ^ {4} \cdot 3 ^ {2}} = 0.4236111111111111
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{1}{4}+\frac{1}{9}+\frac{1}{4^{2}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{9}{36}+\frac{4}{36}+\frac{1}{4^{2}}
Ko te maha noa iti rawa atu o 4 me 9 ko 36. Me tahuri \frac{1}{4} me \frac{1}{9} ki te hautau me te tautūnga 36.
\frac{9+4}{36}+\frac{1}{4^{2}}
Tā te mea he rite te tauraro o \frac{9}{36} me \frac{4}{36}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{13}{36}+\frac{1}{4^{2}}
Tāpirihia te 9 ki te 4, ka 13.
\frac{13}{36}+\frac{1}{16}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{52}{144}+\frac{9}{144}
Ko te maha noa iti rawa atu o 36 me 16 ko 144. Me tahuri \frac{13}{36} me \frac{1}{16} ki te hautau me te tautūnga 144.
\frac{52+9}{144}
Tā te mea he rite te tauraro o \frac{52}{144} me \frac{9}{144}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{61}{144}
Tāpirihia te 52 ki te 9, ka 61.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}