Aromātai
\frac{2}{13}-\frac{3}{13}i\approx 0.153846154-0.230769231i
Wāhi Tūturu
\frac{2}{13} = 0.15384615384615385
Tohaina
Kua tāruatia ki te papatopenga
\frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 2-3i.
\frac{1\left(2-3i\right)}{2^{2}-3^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(2-3i\right)}{13}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{2-3i}{13}
Whakareatia te 1 ki te 2-3i, ka 2-3i.
\frac{2}{13}-\frac{3}{13}i
Whakawehea te 2-3i ki te 13, kia riro ko \frac{2}{13}-\frac{3}{13}i.
Re(\frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)})
Me whakarea te taurunga me te tauraro o \frac{1}{2+3i} ki te haumi hiato o te tauraro, 2-3i.
Re(\frac{1\left(2-3i\right)}{2^{2}-3^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(2-3i\right)}{13})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{2-3i}{13})
Whakareatia te 1 ki te 2-3i, ka 2-3i.
Re(\frac{2}{13}-\frac{3}{13}i)
Whakawehea te 2-3i ki te 13, kia riro ko \frac{2}{13}-\frac{3}{13}i.
\frac{2}{13}
Ko te wāhi tūturu o \frac{2}{13}-\frac{3}{13}i ko \frac{2}{13}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}