Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 2-3i.
\frac{1\left(2-3i\right)}{2^{2}-3^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(2-3i\right)}{13}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{2-3i}{13}
Whakareatia te 1 ki te 2-3i, ka 2-3i.
\frac{2}{13}-\frac{3}{13}i
Whakawehea te 2-3i ki te 13, kia riro ko \frac{2}{13}-\frac{3}{13}i.
Re(\frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)})
Me whakarea te taurunga me te tauraro o \frac{1}{2+3i} ki te haumi hiato o te tauraro, 2-3i.
Re(\frac{1\left(2-3i\right)}{2^{2}-3^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(2-3i\right)}{13})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{2-3i}{13})
Whakareatia te 1 ki te 2-3i, ka 2-3i.
Re(\frac{2}{13}-\frac{3}{13}i)
Whakawehea te 2-3i ki te 13, kia riro ko \frac{2}{13}-\frac{3}{13}i.
\frac{2}{13}
Ko te wāhi tūturu o \frac{2}{13}-\frac{3}{13}i ko \frac{2}{13}.