Aromātai
\frac{5}{2}-\sqrt{3}\approx 0.767949192
Pātaitai
Trigonometry
5 raruraru e ōrite ana ki:
\frac { 1 } { 2 + \sqrt { 3 } } + | \sin 30 ^ { \circ } - 1 |
Tohaina
Kua tāruatia ki te papatopenga
\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+|\sin(30)-1|
Whakangāwaritia te tauraro o \frac{1}{2+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2-\sqrt{3}.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+|\sin(30)-1|
Whakaarohia te \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}+|\sin(30)-1|
Pūrua 2. Pūrua \sqrt{3}.
\frac{2-\sqrt{3}}{1}+|\sin(30)-1|
Tangohia te 3 i te 4, ka 1.
2-\sqrt{3}+|\sin(30)-1|
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
2-\sqrt{3}+|\frac{1}{2}-1|
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
2-\sqrt{3}+|-\frac{1}{2}|
Tangohia te 1 i te \frac{1}{2}, ka -\frac{1}{2}.
2-\sqrt{3}+\frac{1}{2}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{1}{2} ko \frac{1}{2}.
\frac{5}{2}-\sqrt{3}
Tāpirihia te 2 ki te \frac{1}{2}, ka \frac{5}{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}