Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+|\sin(30)-1|
Whakangāwaritia te tauraro o \frac{1}{2+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2-\sqrt{3}.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+|\sin(30)-1|
Whakaarohia te \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}+|\sin(30)-1|
Pūrua 2. Pūrua \sqrt{3}.
\frac{2-\sqrt{3}}{1}+|\sin(30)-1|
Tangohia te 3 i te 4, ka 1.
2-\sqrt{3}+|\sin(30)-1|
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
2-\sqrt{3}+|\frac{1}{2}-1|
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
2-\sqrt{3}+|-\frac{1}{2}|
Tangohia te 1 i te \frac{1}{2}, ka -\frac{1}{2}.
2-\sqrt{3}+\frac{1}{2}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{1}{2} ko \frac{1}{2}.
\frac{5}{2}-\sqrt{3}
Tāpirihia te 2 ki te \frac{1}{2}, ka \frac{5}{2}.