Aromātai
\frac{1}{2}=0.5
Tauwehe
\frac{1}{2} = 0.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{2-\sqrt{2}}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Whakangāwaritia te tauraro o \frac{1}{2+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 2-\sqrt{2}.
\frac{2-\sqrt{2}}{2^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Whakaarohia te \left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{2}}{4-2}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Pūrua 2. Pūrua \sqrt{2}.
\frac{2-\sqrt{2}}{2}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Tangohia te 2 i te 4, ka 2.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{\left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Whakangāwaritia te tauraro o \frac{1}{3\sqrt{2}+2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 3\sqrt{2}-2\sqrt{3}.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Whakaarohia te \left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Whakarohaina te \left(3\sqrt{2}\right)^{2}.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{9\times 2-\left(2\sqrt{3}\right)^{2}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{18-\left(2\sqrt{3}\right)^{2}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Whakareatia te 9 ki te 2, ka 18.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{18-2^{2}\left(\sqrt{3}\right)^{2}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{18-4\left(\sqrt{3}\right)^{2}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{18-4\times 3}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{18-12}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Whakareatia te 4 ki te 3, ka 12.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{1}{4\sqrt{3}+3\sqrt{4}}
Tangohia te 12 i te 18, ka 6.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{1}{4\sqrt{3}+3\times 2}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{1}{4\sqrt{3}+6}
Whakareatia te 3 ki te 2, ka 6.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{\left(4\sqrt{3}+6\right)\left(4\sqrt{3}-6\right)}
Whakangāwaritia te tauraro o \frac{1}{4\sqrt{3}+6} mā te whakarea i te taurunga me te tauraro ki te 4\sqrt{3}-6.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{\left(4\sqrt{3}\right)^{2}-6^{2}}
Whakaarohia te \left(4\sqrt{3}+6\right)\left(4\sqrt{3}-6\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{4^{2}\left(\sqrt{3}\right)^{2}-6^{2}}
Whakarohaina te \left(4\sqrt{3}\right)^{2}.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{16\left(\sqrt{3}\right)^{2}-6^{2}}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{16\times 3-6^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{48-6^{2}}
Whakareatia te 16 ki te 3, ka 48.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{48-36}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{2-\sqrt{2}}{2}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{12}
Tangohia te 36 i te 48, ka 12.
\frac{3\left(2-\sqrt{2}\right)}{6}+\frac{3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 6 ko 6. Whakareatia \frac{2-\sqrt{2}}{2} ki te \frac{3}{3}.
\frac{3\left(2-\sqrt{2}\right)+3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{12}
Tā te mea he rite te tauraro o \frac{3\left(2-\sqrt{2}\right)}{6} me \frac{3\sqrt{2}-2\sqrt{3}}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6-3\sqrt{2}+3\sqrt{2}-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{12}
Mahia ngā whakarea i roto o 3\left(2-\sqrt{2}\right)+3\sqrt{2}-2\sqrt{3}.
\frac{6-2\sqrt{3}}{6}+\frac{4\sqrt{3}-6}{12}
Mahia ngā tātaitai i roto o 6-3\sqrt{2}+3\sqrt{2}-2\sqrt{3}.
\frac{2\left(6-2\sqrt{3}\right)}{12}+\frac{4\sqrt{3}-6}{12}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 6 me 12 ko 12. Whakareatia \frac{6-2\sqrt{3}}{6} ki te \frac{2}{2}.
\frac{2\left(6-2\sqrt{3}\right)+4\sqrt{3}-6}{12}
Tā te mea he rite te tauraro o \frac{2\left(6-2\sqrt{3}\right)}{12} me \frac{4\sqrt{3}-6}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12-4\sqrt{3}+4\sqrt{3}-6}{12}
Mahia ngā whakarea i roto o 2\left(6-2\sqrt{3}\right)+4\sqrt{3}-6.
\frac{6}{12}
Mahia ngā tātaitai i roto o 12-4\sqrt{3}+4\sqrt{3}-6.
\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}