Aromātai
-\frac{1}{b^{6}}+\frac{1}{1728a^{12}}
Tauwehe
\frac{-1728+\frac{b^{6}}{a^{12}}}{1728b^{6}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{1728a^{12}}-\frac{1}{b^{6}}
Me whakarea te \frac{1}{1728} ki te \frac{1}{a^{12}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{b^{6}}{1728b^{6}a^{12}}-\frac{1728a^{12}}{1728b^{6}a^{12}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 1728a^{12} me b^{6} ko 1728b^{6}a^{12}. Whakareatia \frac{1}{1728a^{12}} ki te \frac{b^{6}}{b^{6}}. Whakareatia \frac{1}{b^{6}} ki te \frac{1728a^{12}}{1728a^{12}}.
\frac{b^{6}-1728a^{12}}{1728b^{6}a^{12}}
Tā te mea he rite te tauraro o \frac{b^{6}}{1728b^{6}a^{12}} me \frac{1728a^{12}}{1728b^{6}a^{12}}, me tango rāua mā te tango i ō raua taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}