Whakaoti mō x
x=2
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{15}x^{2}-\frac{3}{10}x+\frac{1}{3}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\left(-\frac{3}{10}\right)^{2}-4\times \frac{1}{15}\times \frac{1}{3}}}{2\times \frac{1}{15}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{15} mō a, -\frac{3}{10} mō b, me \frac{1}{3} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-4\times \frac{1}{15}\times \frac{1}{3}}}{2\times \frac{1}{15}}
Pūruatia -\frac{3}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-\frac{4}{15}\times \frac{1}{3}}}{2\times \frac{1}{15}}
Whakareatia -4 ki te \frac{1}{15}.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-\frac{4}{45}}}{2\times \frac{1}{15}}
Whakareatia -\frac{4}{15} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{1}{900}}}{2\times \frac{1}{15}}
Tāpiri \frac{9}{100} ki te -\frac{4}{45} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{3}{10}\right)±\frac{1}{30}}{2\times \frac{1}{15}}
Tuhia te pūtakerua o te \frac{1}{900}.
x=\frac{\frac{3}{10}±\frac{1}{30}}{2\times \frac{1}{15}}
Ko te tauaro o -\frac{3}{10} ko \frac{3}{10}.
x=\frac{\frac{3}{10}±\frac{1}{30}}{\frac{2}{15}}
Whakareatia 2 ki te \frac{1}{15}.
x=\frac{\frac{1}{3}}{\frac{2}{15}}
Nā, me whakaoti te whārite x=\frac{\frac{3}{10}±\frac{1}{30}}{\frac{2}{15}} ina he tāpiri te ±. Tāpiri \frac{3}{10} ki te \frac{1}{30} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{2}
Whakawehe \frac{1}{3} ki te \frac{2}{15} mā te whakarea \frac{1}{3} ki te tau huripoki o \frac{2}{15}.
x=\frac{\frac{4}{15}}{\frac{2}{15}}
Nā, me whakaoti te whārite x=\frac{\frac{3}{10}±\frac{1}{30}}{\frac{2}{15}} ina he tango te ±. Tango \frac{1}{30} mai i \frac{3}{10} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2
Whakawehe \frac{4}{15} ki te \frac{2}{15} mā te whakarea \frac{4}{15} ki te tau huripoki o \frac{2}{15}.
x=\frac{5}{2} x=2
Kua oti te whārite te whakatau.
\frac{1}{15}x^{2}-\frac{3}{10}x+\frac{1}{3}=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{15}x^{2}-\frac{3}{10}x+\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.
\frac{1}{15}x^{2}-\frac{3}{10}x=-\frac{1}{3}
Mā te tango i te \frac{1}{3} i a ia ake anō ka toe ko te 0.
\frac{\frac{1}{15}x^{2}-\frac{3}{10}x}{\frac{1}{15}}=-\frac{\frac{1}{3}}{\frac{1}{15}}
Me whakarea ngā taha e rua ki te 15.
x^{2}+\left(-\frac{\frac{3}{10}}{\frac{1}{15}}\right)x=-\frac{\frac{1}{3}}{\frac{1}{15}}
Mā te whakawehe ki te \frac{1}{15} ka wetekia te whakareanga ki te \frac{1}{15}.
x^{2}-\frac{9}{2}x=-\frac{\frac{1}{3}}{\frac{1}{15}}
Whakawehe -\frac{3}{10} ki te \frac{1}{15} mā te whakarea -\frac{3}{10} ki te tau huripoki o \frac{1}{15}.
x^{2}-\frac{9}{2}x=-5
Whakawehe -\frac{1}{3} ki te \frac{1}{15} mā te whakarea -\frac{1}{3} ki te tau huripoki o \frac{1}{15}.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-5+\left(-\frac{9}{4}\right)^{2}
Whakawehea te -\frac{9}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{4}. Nā, tāpiria te pūrua o te -\frac{9}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-5+\frac{81}{16}
Pūruatia -\frac{9}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{1}{16}
Tāpiri -5 ki te \frac{81}{16}.
\left(x-\frac{9}{4}\right)^{2}=\frac{1}{16}
Tauwehea x^{2}-\frac{9}{2}x+\frac{81}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{4}=\frac{1}{4} x-\frac{9}{4}=-\frac{1}{4}
Whakarūnātia.
x=\frac{5}{2} x=2
Me tāpiri \frac{9}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}