Aromātai
-\frac{3}{44}\approx -0.068181818
Tauwehe
-\frac{3}{44} = -0.06818181818181818
Tohaina
Kua tāruatia ki te papatopenga
\frac{11}{132}-\frac{20}{132}
Ko te maha noa iti rawa atu o 12 me 33 ko 132. Me tahuri \frac{1}{12} me \frac{5}{33} ki te hautau me te tautūnga 132.
\frac{11-20}{132}
Tā te mea he rite te tauraro o \frac{11}{132} me \frac{20}{132}, me tango rāua mā te tango i ō raua taurunga.
\frac{-9}{132}
Tangohia te 20 i te 11, ka -9.
-\frac{3}{44}
Whakahekea te hautanga \frac{-9}{132} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}