Aromātai
-\frac{8797}{132}\approx -66.643939394
Tauwehe
-\frac{8797}{132} = -66\frac{85}{132} = -66.64393939393939
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{12}+\frac{\frac{48+5}{12}-35}{\frac{11}{24}}
Whakareatia te 4 ki te 12, ka 48.
\frac{1}{12}+\frac{\frac{53}{12}-35}{\frac{11}{24}}
Tāpirihia te 48 ki te 5, ka 53.
\frac{1}{12}+\frac{\frac{53}{12}-\frac{420}{12}}{\frac{11}{24}}
Me tahuri te 35 ki te hautau \frac{420}{12}.
\frac{1}{12}+\frac{\frac{53-420}{12}}{\frac{11}{24}}
Tā te mea he rite te tauraro o \frac{53}{12} me \frac{420}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{12}+\frac{-\frac{367}{12}}{\frac{11}{24}}
Tangohia te 420 i te 53, ka -367.
\frac{1}{12}-\frac{367}{12}\times \frac{24}{11}
Whakawehe -\frac{367}{12} ki te \frac{11}{24} mā te whakarea -\frac{367}{12} ki te tau huripoki o \frac{11}{24}.
\frac{1}{12}+\frac{-367\times 24}{12\times 11}
Me whakarea te -\frac{367}{12} ki te \frac{24}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{12}+\frac{-8808}{132}
Mahia ngā whakarea i roto i te hautanga \frac{-367\times 24}{12\times 11}.
\frac{1}{12}-\frac{734}{11}
Whakahekea te hautanga \frac{-8808}{132} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{11}{132}-\frac{8808}{132}
Ko te maha noa iti rawa atu o 12 me 11 ko 132. Me tahuri \frac{1}{12} me \frac{734}{11} ki te hautau me te tautūnga 132.
\frac{11-8808}{132}
Tā te mea he rite te tauraro o \frac{11}{132} me \frac{8808}{132}, me tango rāua mā te tango i ō raua taurunga.
-\frac{8797}{132}
Tangohia te 8808 i te 11, ka -8797.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}