Aromātai
\frac{515}{384}\approx 1.341145833
Tauwehe
\frac{5 \cdot 103}{2 ^ {7} \cdot 3} = 1\frac{131}{384} = 1.3411458333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{12}+\frac{3}{12}+1+\frac{1}{128}
Ko te maha noa iti rawa atu o 12 me 4 ko 12. Me tahuri \frac{1}{12} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{1+3}{12}+1+\frac{1}{128}
Tā te mea he rite te tauraro o \frac{1}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4}{12}+1+\frac{1}{128}
Tāpirihia te 1 ki te 3, ka 4.
\frac{1}{3}+1+\frac{1}{128}
Whakahekea te hautanga \frac{4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{1}{3}+\frac{3}{3}+\frac{1}{128}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{1+3}{3}+\frac{1}{128}
Tā te mea he rite te tauraro o \frac{1}{3} me \frac{3}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{4}{3}+\frac{1}{128}
Tāpirihia te 1 ki te 3, ka 4.
\frac{512}{384}+\frac{3}{384}
Ko te maha noa iti rawa atu o 3 me 128 ko 384. Me tahuri \frac{4}{3} me \frac{1}{128} ki te hautau me te tautūnga 384.
\frac{512+3}{384}
Tā te mea he rite te tauraro o \frac{512}{384} me \frac{3}{384}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{515}{384}
Tāpirihia te 512 ki te 3, ka 515.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}