Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{10}x^{2}-\frac{3}{2}x+5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times \frac{1}{10}\times 5}}{2\times \frac{1}{10}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{10} mō a, -\frac{3}{2} mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times \frac{1}{10}\times 5}}{2\times \frac{1}{10}}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-\frac{2}{5}\times 5}}{2\times \frac{1}{10}}
Whakareatia -4 ki te \frac{1}{10}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-2}}{2\times \frac{1}{10}}
Whakareatia -\frac{2}{5} ki te 5.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{1}{4}}}{2\times \frac{1}{10}}
Tāpiri \frac{9}{4} ki te -2.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{1}{2}}{2\times \frac{1}{10}}
Tuhia te pūtakerua o te \frac{1}{4}.
x=\frac{\frac{3}{2}±\frac{1}{2}}{2\times \frac{1}{10}}
Ko te tauaro o -\frac{3}{2} ko \frac{3}{2}.
x=\frac{\frac{3}{2}±\frac{1}{2}}{\frac{1}{5}}
Whakareatia 2 ki te \frac{1}{10}.
x=\frac{2}{\frac{1}{5}}
Nā, me whakaoti te whārite x=\frac{\frac{3}{2}±\frac{1}{2}}{\frac{1}{5}} ina he tāpiri te ±. Tāpiri \frac{3}{2} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=10
Whakawehe 2 ki te \frac{1}{5} mā te whakarea 2 ki te tau huripoki o \frac{1}{5}.
x=\frac{1}{\frac{1}{5}}
Nā, me whakaoti te whārite x=\frac{\frac{3}{2}±\frac{1}{2}}{\frac{1}{5}} ina he tango te ±. Tango \frac{1}{2} mai i \frac{3}{2} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5
Whakawehe 1 ki te \frac{1}{5} mā te whakarea 1 ki te tau huripoki o \frac{1}{5}.
x=10 x=5
Kua oti te whārite te whakatau.
\frac{1}{10}x^{2}-\frac{3}{2}x+5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{10}x^{2}-\frac{3}{2}x+5-5=-5
Me tango 5 mai i ngā taha e rua o te whārite.
\frac{1}{10}x^{2}-\frac{3}{2}x=-5
Mā te tango i te 5 i a ia ake anō ka toe ko te 0.
\frac{\frac{1}{10}x^{2}-\frac{3}{2}x}{\frac{1}{10}}=-\frac{5}{\frac{1}{10}}
Me whakarea ngā taha e rua ki te 10.
x^{2}+\left(-\frac{\frac{3}{2}}{\frac{1}{10}}\right)x=-\frac{5}{\frac{1}{10}}
Mā te whakawehe ki te \frac{1}{10} ka wetekia te whakareanga ki te \frac{1}{10}.
x^{2}-15x=-\frac{5}{\frac{1}{10}}
Whakawehe -\frac{3}{2} ki te \frac{1}{10} mā te whakarea -\frac{3}{2} ki te tau huripoki o \frac{1}{10}.
x^{2}-15x=-50
Whakawehe -5 ki te \frac{1}{10} mā te whakarea -5 ki te tau huripoki o \frac{1}{10}.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-50+\left(-\frac{15}{2}\right)^{2}
Whakawehea te -15, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{15}{2}. Nā, tāpiria te pūrua o te -\frac{15}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-15x+\frac{225}{4}=-50+\frac{225}{4}
Pūruatia -\frac{15}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-15x+\frac{225}{4}=\frac{25}{4}
Tāpiri -50 ki te \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-15x+\frac{225}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{15}{2}=\frac{5}{2} x-\frac{15}{2}=-\frac{5}{2}
Whakarūnātia.
x=10 x=5
Me tāpiri \frac{15}{2} ki ngā taha e rua o te whārite.