Aromātai
-\frac{11p}{5}+\frac{1}{2}
Whakaroha
-\frac{11p}{5}+\frac{1}{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{10}\times 5p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{10} ki te 5p-1.
\frac{5}{10}p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Whakareatia te \frac{1}{10} ki te 5, ka \frac{5}{10}.
\frac{1}{2}p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{2}p-\frac{1}{10}-\frac{5}{2}p-\frac{p-3}{5}
Whakareatia te \frac{1}{10} ki te -1, ka -\frac{1}{10}.
-2p-\frac{1}{10}-\frac{p-3}{5}
Pahekotia te \frac{1}{2}p me -\frac{5}{2}p, ka -2p.
-2p-\frac{1}{10}-\frac{2\left(p-3\right)}{10}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 10 me 5 ko 10. Whakareatia \frac{p-3}{5} ki te \frac{2}{2}.
-2p+\frac{-1-2\left(p-3\right)}{10}
Tā te mea he rite te tauraro o -\frac{1}{10} me \frac{2\left(p-3\right)}{10}, me tango rāua mā te tango i ō raua taurunga.
-2p+\frac{-1-2p+6}{10}
Mahia ngā whakarea i roto o -1-2\left(p-3\right).
-2p+\frac{5-2p}{10}
Whakakotahitia ngā kupu rite i -1-2p+6.
\frac{10\left(-2\right)p}{10}+\frac{5-2p}{10}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -2p ki te \frac{10}{10}.
\frac{10\left(-2\right)p+5-2p}{10}
Tā te mea he rite te tauraro o \frac{10\left(-2\right)p}{10} me \frac{5-2p}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-20p+5-2p}{10}
Mahia ngā whakarea i roto o 10\left(-2\right)p+5-2p.
\frac{-22p+5}{10}
Whakakotahitia ngā kupu rite i -20p+5-2p.
\frac{1}{10}\times 5p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{10} ki te 5p-1.
\frac{5}{10}p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Whakareatia te \frac{1}{10} ki te 5, ka \frac{5}{10}.
\frac{1}{2}p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Whakahekea te hautanga \frac{5}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1}{2}p-\frac{1}{10}-\frac{5}{2}p-\frac{p-3}{5}
Whakareatia te \frac{1}{10} ki te -1, ka -\frac{1}{10}.
-2p-\frac{1}{10}-\frac{p-3}{5}
Pahekotia te \frac{1}{2}p me -\frac{5}{2}p, ka -2p.
-2p-\frac{1}{10}-\frac{2\left(p-3\right)}{10}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 10 me 5 ko 10. Whakareatia \frac{p-3}{5} ki te \frac{2}{2}.
-2p+\frac{-1-2\left(p-3\right)}{10}
Tā te mea he rite te tauraro o -\frac{1}{10} me \frac{2\left(p-3\right)}{10}, me tango rāua mā te tango i ō raua taurunga.
-2p+\frac{-1-2p+6}{10}
Mahia ngā whakarea i roto o -1-2\left(p-3\right).
-2p+\frac{5-2p}{10}
Whakakotahitia ngā kupu rite i -1-2p+6.
\frac{10\left(-2\right)p}{10}+\frac{5-2p}{10}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -2p ki te \frac{10}{10}.
\frac{10\left(-2\right)p+5-2p}{10}
Tā te mea he rite te tauraro o \frac{10\left(-2\right)p}{10} me \frac{5-2p}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-20p+5-2p}{10}
Mahia ngā whakarea i roto o 10\left(-2\right)p+5-2p.
\frac{-22p+5}{10}
Whakakotahitia ngā kupu rite i -20p+5-2p.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}