Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
1=\left(x-1\right)\left(-x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-1\right)\left(-x-1\right).
1=-x^{2}+1
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te -x-1 ka whakakotahi i ngā kupu rite.
-x^{2}+1=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}=1-1
Tangohia te 1 mai i ngā taha e rua.
-x^{2}=0
Tangohia te 1 i te 1, ka 0.
x^{2}=0
Whakawehea ngā taha e rua ki te -1. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
x=0 x=0
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x=0
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
1=\left(x-1\right)\left(-x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(x-1\right)\left(-x-1\right).
1=-x^{2}+1
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te -x-1 ka whakakotahi i ngā kupu rite.
-x^{2}+1=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+1-1=0
Tangohia te 1 mai i ngā taha e rua.
-x^{2}=0
Tangohia te 1 i te 1, ka 0.
x^{2}=0
Whakawehea ngā taha e rua ki te -1. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
x=\frac{0±\sqrt{0^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±0}{2}
Tuhia te pūtakerua o te 0^{2}.
x=0
Whakawehe 0 ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}