Whakaoti mō x
x = \frac{15 \sqrt{193} + 195}{16} \approx 25.21166624
x=\frac{195-15\sqrt{193}}{16}\approx -0.83666624
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{27}{4}+12+54x\left(8x+9\right)^{-1}=x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12x, arā, te tauraro pātahi he tino iti rawa te kitea o x,12.
\frac{75}{4}+54x\left(8x+9\right)^{-1}=x
Tāpirihia te \frac{27}{4} ki te 12, ka \frac{75}{4}.
\frac{75}{4}+54x\left(8x+9\right)^{-1}-x=0
Tangohia te x mai i ngā taha e rua.
-x+54\times \frac{1}{8x+9}x+\frac{75}{4}=0
Whakaraupapatia anō ngā kīanga tau.
-x\times 4\left(8x+9\right)+54\times 4\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
Tē taea kia ōrite te tāupe x ki -\frac{9}{8} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(8x+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o 8x+9,4.
-4x\left(8x+9\right)+54\times 4\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
Whakareatia te -1 ki te 4, ka -4.
-32x^{2}-36x+54\times 4\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4x ki te 8x+9.
-32x^{2}-36x+216\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
Whakareatia te 54 ki te 4, ka 216.
-32x^{2}-36x+216x+4\left(8x+9\right)\times \frac{75}{4}=0
Whakareatia te 216 ki te 1, ka 216.
-32x^{2}+180x+4\left(8x+9\right)\times \frac{75}{4}=0
Pahekotia te -36x me 216x, ka 180x.
-32x^{2}+180x+75\left(8x+9\right)=0
Whakareatia te 4 ki te \frac{75}{4}, ka 75.
-32x^{2}+180x+600x+675=0
Whakamahia te āhuatanga tohatoha hei whakarea te 75 ki te 8x+9.
-32x^{2}+780x+675=0
Pahekotia te 180x me 600x, ka 780x.
x=\frac{-780±\sqrt{780^{2}-4\left(-32\right)\times 675}}{2\left(-32\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -32 mō a, 780 mō b, me 675 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-780±\sqrt{608400-4\left(-32\right)\times 675}}{2\left(-32\right)}
Pūrua 780.
x=\frac{-780±\sqrt{608400+128\times 675}}{2\left(-32\right)}
Whakareatia -4 ki te -32.
x=\frac{-780±\sqrt{608400+86400}}{2\left(-32\right)}
Whakareatia 128 ki te 675.
x=\frac{-780±\sqrt{694800}}{2\left(-32\right)}
Tāpiri 608400 ki te 86400.
x=\frac{-780±60\sqrt{193}}{2\left(-32\right)}
Tuhia te pūtakerua o te 694800.
x=\frac{-780±60\sqrt{193}}{-64}
Whakareatia 2 ki te -32.
x=\frac{60\sqrt{193}-780}{-64}
Nā, me whakaoti te whārite x=\frac{-780±60\sqrt{193}}{-64} ina he tāpiri te ±. Tāpiri -780 ki te 60\sqrt{193}.
x=\frac{195-15\sqrt{193}}{16}
Whakawehe -780+60\sqrt{193} ki te -64.
x=\frac{-60\sqrt{193}-780}{-64}
Nā, me whakaoti te whārite x=\frac{-780±60\sqrt{193}}{-64} ina he tango te ±. Tango 60\sqrt{193} mai i -780.
x=\frac{15\sqrt{193}+195}{16}
Whakawehe -780-60\sqrt{193} ki te -64.
x=\frac{195-15\sqrt{193}}{16} x=\frac{15\sqrt{193}+195}{16}
Kua oti te whārite te whakatau.
\frac{27}{4}+12+54x\left(8x+9\right)^{-1}=x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 12x, arā, te tauraro pātahi he tino iti rawa te kitea o x,12.
\frac{75}{4}+54x\left(8x+9\right)^{-1}=x
Tāpirihia te \frac{27}{4} ki te 12, ka \frac{75}{4}.
\frac{75}{4}+54x\left(8x+9\right)^{-1}-x=0
Tangohia te x mai i ngā taha e rua.
54x\left(8x+9\right)^{-1}-x=-\frac{75}{4}
Tangohia te \frac{75}{4} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x+54\times \frac{1}{8x+9}x=-\frac{75}{4}
Whakaraupapatia anō ngā kīanga tau.
-x\times 4\left(8x+9\right)+54\times 4\times 1x=-75\left(8x+9\right)
Tē taea kia ōrite te tāupe x ki -\frac{9}{8} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(8x+9\right), arā, te tauraro pātahi he tino iti rawa te kitea o 8x+9,4.
-4x\left(8x+9\right)+54\times 4\times 1x=-75\left(8x+9\right)
Whakareatia te -1 ki te 4, ka -4.
-32x^{2}-36x+54\times 4\times 1x=-75\left(8x+9\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -4x ki te 8x+9.
-32x^{2}-36x+216\times 1x=-75\left(8x+9\right)
Whakareatia te 54 ki te 4, ka 216.
-32x^{2}-36x+216x=-75\left(8x+9\right)
Whakareatia te 216 ki te 1, ka 216.
-32x^{2}+180x=-75\left(8x+9\right)
Pahekotia te -36x me 216x, ka 180x.
-32x^{2}+180x=-600x-675
Whakamahia te āhuatanga tohatoha hei whakarea te -75 ki te 8x+9.
-32x^{2}+180x+600x=-675
Me tāpiri te 600x ki ngā taha e rua.
-32x^{2}+780x=-675
Pahekotia te 180x me 600x, ka 780x.
\frac{-32x^{2}+780x}{-32}=-\frac{675}{-32}
Whakawehea ngā taha e rua ki te -32.
x^{2}+\frac{780}{-32}x=-\frac{675}{-32}
Mā te whakawehe ki te -32 ka wetekia te whakareanga ki te -32.
x^{2}-\frac{195}{8}x=-\frac{675}{-32}
Whakahekea te hautanga \frac{780}{-32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{195}{8}x=\frac{675}{32}
Whakawehe -675 ki te -32.
x^{2}-\frac{195}{8}x+\left(-\frac{195}{16}\right)^{2}=\frac{675}{32}+\left(-\frac{195}{16}\right)^{2}
Whakawehea te -\frac{195}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{195}{16}. Nā, tāpiria te pūrua o te -\frac{195}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{195}{8}x+\frac{38025}{256}=\frac{675}{32}+\frac{38025}{256}
Pūruatia -\frac{195}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{195}{8}x+\frac{38025}{256}=\frac{43425}{256}
Tāpiri \frac{675}{32} ki te \frac{38025}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{195}{16}\right)^{2}=\frac{43425}{256}
Tauwehea x^{2}-\frac{195}{8}x+\frac{38025}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{195}{16}\right)^{2}}=\sqrt{\frac{43425}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{195}{16}=\frac{15\sqrt{193}}{16} x-\frac{195}{16}=-\frac{15\sqrt{193}}{16}
Whakarūnātia.
x=\frac{15\sqrt{193}+195}{16} x=\frac{195-15\sqrt{193}}{16}
Me tāpiri \frac{195}{16} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}