Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{1+x^{2}}+\frac{1}{1+x^{2-4}}
Tangohia te 2 i te 4, ka 2.
\frac{1}{1+x^{2}}+\frac{1}{1+x^{-2}}
Tangohia te 4 i te 2, ka -2.
\frac{1}{1+x^{2}}+\frac{1}{x^{-2}\left(x^{2}+1\right)}
Tauwehea te 1+x^{-2}.
\frac{x^{-2}}{x^{-2}\left(x^{2}+1\right)}+\frac{1}{x^{-2}\left(x^{2}+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 1+x^{2} me x^{-2}\left(x^{2}+1\right) ko x^{-2}\left(x^{2}+1\right). Whakareatia \frac{1}{1+x^{2}} ki te \frac{x^{-2}}{x^{-2}}.
\frac{x^{-2}+1}{x^{-2}\left(x^{2}+1\right)}
Tā te mea he rite te tauraro o \frac{x^{-2}}{x^{-2}\left(x^{2}+1\right)} me \frac{1}{x^{-2}\left(x^{2}+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{x^{-2}\left(x^{2}+1\right)}{x^{-2}\left(x^{2}+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{-2}+1}{x^{-2}\left(x^{2}+1\right)}.
1
Me whakakore tahi te x^{-2}\left(x^{2}+1\right) i te taurunga me te tauraro.