Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i
Me whakarea te taurunga me te tauraro o \frac{1}{1+i} ki te haumi hiato o te tauraro, 1-i.
\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(1-i\right)}{2}+i
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{1-i}{2}+i
Whakareatia te 1 ki te 1-i, ka 1-i.
\frac{1}{2}-\frac{1}{2}i+i
Whakawehea te 1-i ki te 2, kia riro ko \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}+\left(-\frac{1}{2}+1\right)i
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o \frac{1}{2}-\frac{1}{2}i me te i.
\frac{1}{2}+\frac{1}{2}i
Tāpiri -\frac{1}{2} ki te 1.
Re(\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i)
Me whakarea te taurunga me te tauraro o \frac{1}{1+i} ki te haumi hiato o te tauraro, 1-i.
Re(\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i)
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(1-i\right)}{2}+i)
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{1-i}{2}+i)
Whakareatia te 1 ki te 1-i, ka 1-i.
Re(\frac{1}{2}-\frac{1}{2}i+i)
Whakawehea te 1-i ki te 2, kia riro ko \frac{1}{2}-\frac{1}{2}i.
Re(\frac{1}{2}+\left(-\frac{1}{2}+1\right)i)
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o \frac{1}{2}-\frac{1}{2}i me te i.
Re(\frac{1}{2}+\frac{1}{2}i)
Tāpiri -\frac{1}{2} ki te 1.
\frac{1}{2}
Ko te wāhi tūturu o \frac{1}{2}+\frac{1}{2}i ko \frac{1}{2}.