Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{1\times 5-i\times 5}
Whakareatia 1-i ki te 5.
\frac{1}{5-5i}
Mahia ngā whakarea i roto o 1\times 5-i\times 5.
\frac{1\left(5+5i\right)}{\left(5-5i\right)\left(5+5i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 5+5i.
\frac{1\left(5+5i\right)}{5^{2}-5^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(5+5i\right)}{50}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{5+5i}{50}
Whakareatia te 1 ki te 5+5i, ka 5+5i.
\frac{1}{10}+\frac{1}{10}i
Whakawehea te 5+5i ki te 50, kia riro ko \frac{1}{10}+\frac{1}{10}i.
Re(\frac{1}{1\times 5-i\times 5})
Whakareatia 1-i ki te 5.
Re(\frac{1}{5-5i})
Mahia ngā whakarea i roto o 1\times 5-i\times 5.
Re(\frac{1\left(5+5i\right)}{\left(5-5i\right)\left(5+5i\right)})
Me whakarea te taurunga me te tauraro o \frac{1}{5-5i} ki te haumi hiato o te tauraro, 5+5i.
Re(\frac{1\left(5+5i\right)}{5^{2}-5^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(5+5i\right)}{50})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{5+5i}{50})
Whakareatia te 1 ki te 5+5i, ka 5+5i.
Re(\frac{1}{10}+\frac{1}{10}i)
Whakawehea te 5+5i ki te 50, kia riro ko \frac{1}{10}+\frac{1}{10}i.
\frac{1}{10}
Ko te wāhi tūturu o \frac{1}{10}+\frac{1}{10}i ko \frac{1}{10}.