Aromātai
\frac{1}{10}+\frac{1}{10}i=0.1+0.1i
Wāhi Tūturu
\frac{1}{10} = 0.1
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{1\times 5-i\times 5}
Whakareatia 1-i ki te 5.
\frac{1}{5-5i}
Mahia ngā whakarea i roto o 1\times 5-i\times 5.
\frac{1\left(5+5i\right)}{\left(5-5i\right)\left(5+5i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 5+5i.
\frac{1\left(5+5i\right)}{5^{2}-5^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(5+5i\right)}{50}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{5+5i}{50}
Whakareatia te 1 ki te 5+5i, ka 5+5i.
\frac{1}{10}+\frac{1}{10}i
Whakawehea te 5+5i ki te 50, kia riro ko \frac{1}{10}+\frac{1}{10}i.
Re(\frac{1}{1\times 5-i\times 5})
Whakareatia 1-i ki te 5.
Re(\frac{1}{5-5i})
Mahia ngā whakarea i roto o 1\times 5-i\times 5.
Re(\frac{1\left(5+5i\right)}{\left(5-5i\right)\left(5+5i\right)})
Me whakarea te taurunga me te tauraro o \frac{1}{5-5i} ki te haumi hiato o te tauraro, 5+5i.
Re(\frac{1\left(5+5i\right)}{5^{2}-5^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(5+5i\right)}{50})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{5+5i}{50})
Whakareatia te 1 ki te 5+5i, ka 5+5i.
Re(\frac{1}{10}+\frac{1}{10}i)
Whakawehea te 5+5i ki te 50, kia riro ko \frac{1}{10}+\frac{1}{10}i.
\frac{1}{10}
Ko te wāhi tūturu o \frac{1}{10}+\frac{1}{10}i ko \frac{1}{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}