Aromātai
-\frac{2}{5}=-0.4
Tauwehe
-\frac{2}{5} = -0.4
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{5}-\frac{5}{\left(-5\right)^{2}}-\frac{25}{\left(-5\right)^{3}}-\frac{125}{\left(-5\right)^{4}}
Ka taea te hautanga \frac{1}{-5} te tuhi anō ko -\frac{1}{5} mā te tango i te tohu tōraro.
-\frac{1}{5}-\frac{5}{25}-\frac{25}{\left(-5\right)^{3}}-\frac{125}{\left(-5\right)^{4}}
Tātaihia te -5 mā te pū o 2, kia riro ko 25.
-\frac{1}{5}-\frac{1}{5}-\frac{25}{\left(-5\right)^{3}}-\frac{125}{\left(-5\right)^{4}}
Whakahekea te hautanga \frac{5}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{-1-1}{5}-\frac{25}{\left(-5\right)^{3}}-\frac{125}{\left(-5\right)^{4}}
Tā te mea he rite te tauraro o -\frac{1}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2}{5}-\frac{25}{\left(-5\right)^{3}}-\frac{125}{\left(-5\right)^{4}}
Tangohia te 1 i te -1, ka -2.
-\frac{2}{5}-\frac{25}{-125}-\frac{125}{\left(-5\right)^{4}}
Tātaihia te -5 mā te pū o 3, kia riro ko -125.
-\frac{2}{5}-\left(-\frac{1}{5}\right)-\frac{125}{\left(-5\right)^{4}}
Whakahekea te hautanga \frac{25}{-125} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
-\frac{2}{5}+\frac{1}{5}-\frac{125}{\left(-5\right)^{4}}
Ko te tauaro o -\frac{1}{5} ko \frac{1}{5}.
\frac{-2+1}{5}-\frac{125}{\left(-5\right)^{4}}
Tā te mea he rite te tauraro o -\frac{2}{5} me \frac{1}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{5}-\frac{125}{\left(-5\right)^{4}}
Tāpirihia te -2 ki te 1, ka -1.
-\frac{1}{5}-\frac{125}{625}
Tātaihia te -5 mā te pū o 4, kia riro ko 625.
-\frac{1}{5}-\frac{1}{5}
Whakahekea te hautanga \frac{125}{625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 125.
\frac{-1-1}{5}
Tā te mea he rite te tauraro o -\frac{1}{5} me \frac{1}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2}{5}
Tangohia te 1 i te -1, ka -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}