Aromātai
\frac{677}{52}\approx 13.019230769
Tauwehe
\frac{677}{2 ^ {2} \cdot 13} = 13\frac{1}{52} = 13.01923076923077
Tohaina
Kua tāruatia ki te papatopenga
\frac{-9}{-468}+13
Whakawehe 1 ki te \frac{-468}{-9} mā te whakarea 1 ki te tau huripoki o \frac{-468}{-9}.
\frac{1}{52}+13
Whakahekea te hautanga \frac{-9}{-468} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -9.
\frac{1}{52}+\frac{676}{52}
Me tahuri te 13 ki te hautau \frac{676}{52}.
\frac{1+676}{52}
Tā te mea he rite te tauraro o \frac{1}{52} me \frac{676}{52}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{677}{52}
Tāpirihia te 1 ki te 676, ka 677.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}