\frac { 1 } { ( - 061 ) ( 001 ) ( \sqrt { 2 ( 3864 } ) } ) ( - \frac { 2 } { 5 } ( 4 ) ^ { 5 / 2 } )
Aromātai
\frac{16\sqrt{483}}{147315}\approx 0.002386968
Pātaitai
\frac { 1 } { ( - 061 ) ( 001 ) ( \sqrt { 2 ( 3864 } ) } ) ( - \frac { 2 } { 5 } ( 4 ) ^ { 5 / 2 } )
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{-61\sqrt{2\times 3864}}\left(-\frac{2}{5}\right)\times 4^{\frac{5}{2}}
Whakareatia te -61 ki te 1, ka -61.
\frac{1}{-61\sqrt{7728}}\left(-\frac{2}{5}\right)\times 4^{\frac{5}{2}}
Whakareatia te 2 ki te 3864, ka 7728.
\frac{1}{-61\times 4\sqrt{483}}\left(-\frac{2}{5}\right)\times 4^{\frac{5}{2}}
Tauwehea te 7728=4^{2}\times 483. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 483} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{483}. Tuhia te pūtakerua o te 4^{2}.
\frac{1}{-244\sqrt{483}}\left(-\frac{2}{5}\right)\times 4^{\frac{5}{2}}
Whakareatia te -61 ki te 4, ka -244.
\frac{\sqrt{483}}{-244\left(\sqrt{483}\right)^{2}}\left(-\frac{2}{5}\right)\times 4^{\frac{5}{2}}
Whakangāwaritia te tauraro o \frac{1}{-244\sqrt{483}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{483}.
\frac{\sqrt{483}}{-244\times 483}\left(-\frac{2}{5}\right)\times 4^{\frac{5}{2}}
Ko te pūrua o \sqrt{483} ko 483.
\frac{\sqrt{483}}{-117852}\left(-\frac{2}{5}\right)\times 4^{\frac{5}{2}}
Whakareatia te -244 ki te 483, ka -117852.
\frac{\sqrt{483}}{-117852}\left(-\frac{2}{5}\right)\times 32
Tātaihia te 4 mā te pū o \frac{5}{2}, kia riro ko 32.
\frac{\sqrt{483}}{-117852}\left(-\frac{64}{5}\right)
Whakareatia te -\frac{2}{5} ki te 32, ka -\frac{64}{5}.
\frac{-\sqrt{483}\times 64}{-117852\times 5}
Me whakarea te \frac{\sqrt{483}}{-117852} ki te -\frac{64}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-16\sqrt{483}}{-29463\times 5}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{-16\sqrt{483}}{-147315}
Whakareatia te -29463 ki te 5, ka -147315.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}