Aromātai
4
Tauwehe
2^{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\frac{1}{\sqrt{5}+2}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}-2} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}+2.
\frac{\sqrt{5}+2}{\left(\sqrt{5}\right)^{2}-2^{2}}-\frac{1}{\sqrt{5}+2}
Whakaarohia te \left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}+2}{5-4}-\frac{1}{\sqrt{5}+2}
Pūrua \sqrt{5}. Pūrua 2.
\frac{\sqrt{5}+2}{1}-\frac{1}{\sqrt{5}+2}
Tangohia te 4 i te 5, ka 1.
\sqrt{5}+2-\frac{1}{\sqrt{5}+2}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\sqrt{5}+2-\frac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}+2} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}-2.
\sqrt{5}+2-\frac{\sqrt{5}-2}{\left(\sqrt{5}\right)^{2}-2^{2}}
Whakaarohia te \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{5}+2-\frac{\sqrt{5}-2}{5-4}
Pūrua \sqrt{5}. Pūrua 2.
\sqrt{5}+2-\frac{\sqrt{5}-2}{1}
Tangohia te 4 i te 5, ka 1.
\sqrt{5}+2-\left(\sqrt{5}-2\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\sqrt{5}+2-\sqrt{5}-\left(-2\right)
Hei kimi i te tauaro o \sqrt{5}-2, kimihia te tauaro o ia taurangi.
\sqrt{5}+2-\sqrt{5}+2
Ko te tauaro o -2 ko 2.
2+2
Pahekotia te \sqrt{5} me -\sqrt{5}, ka 0.
4
Tāpirihia te 2 ki te 2, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}