Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{3}-12}{\left(\sqrt{3}+12\right)\left(\sqrt{3}-12\right)}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}+12} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}-12.
\frac{\sqrt{3}-12}{\left(\sqrt{3}\right)^{2}-12^{2}}
Whakaarohia te \left(\sqrt{3}+12\right)\left(\sqrt{3}-12\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}-12}{3-144}
Pūrua \sqrt{3}. Pūrua 12.
\frac{\sqrt{3}-12}{-141}
Tangohia te 144 i te 3, ka -141.
\frac{-\sqrt{3}+12}{141}
Me whakarea tahi te taurunga me te tauraro ki te -1.