Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2\sqrt{502}-\sqrt{200}}
Tauwehea te 2008=2^{2}\times 502. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 502} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{502}. Tuhia te pūtakerua o te 2^{2}.
\frac{1}{2\sqrt{502}-10\sqrt{2}}
Tauwehea te 200=10^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 2} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{2}. Tuhia te pūtakerua o te 10^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{1}{2\sqrt{502}-10\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{502}+10\sqrt{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{\left(2\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Whakaarohia te \left(2\sqrt{502}-10\sqrt{2}\right)\left(2\sqrt{502}+10\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2^{2}\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Whakarohaina te \left(2\sqrt{502}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{4\left(\sqrt{502}\right)^{2}-\left(-10\sqrt{2}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{2\sqrt{502}+10\sqrt{2}}{4\times 502-\left(-10\sqrt{2}\right)^{2}}
Ko te pūrua o \sqrt{502} ko 502.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\sqrt{2}\right)^{2}}
Whakareatia te 4 ki te 502, ka 2008.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-\left(-10\right)^{2}\left(\sqrt{2}\right)^{2}}
Whakarohaina te \left(-10\sqrt{2}\right)^{2}.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\left(\sqrt{2}\right)^{2}}
Tātaihia te -10 mā te pū o 2, kia riro ko 100.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-100\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\sqrt{502}+10\sqrt{2}}{2008-200}
Whakareatia te 100 ki te 2, ka 200.
\frac{2\sqrt{502}+10\sqrt{2}}{1808}
Tangohia te 200 i te 2008, ka 1808.