Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}-1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}+1.
\frac{\sqrt{2}+1}{\left(\sqrt{2}\right)^{2}-1^{2}}+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
Whakaarohia te \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}+1}{2-1}+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
Pūrua \sqrt{2}. Pūrua 1.
\frac{\sqrt{2}+1}{1}+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
Tangohia te 1 i te 2, ka 1.
\sqrt{2}+1+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+\sqrt{8}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\sqrt{2}+1+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)+2\sqrt{2}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
3\sqrt{2}+1+\sqrt{3}\left(\sqrt{3}-\sqrt{6}\right)
Pahekotia te \sqrt{2} me 2\sqrt{2}, ka 3\sqrt{2}.
3\sqrt{2}+1+\left(\sqrt{3}\right)^{2}-\sqrt{3}\sqrt{6}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{3} ki te \sqrt{3}-\sqrt{6}.
3\sqrt{2}+1+3-\sqrt{3}\sqrt{6}
Ko te pūrua o \sqrt{3} ko 3.
3\sqrt{2}+1+3-\sqrt{3}\sqrt{3}\sqrt{2}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
3\sqrt{2}+1+3-3\sqrt{2}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
3\sqrt{2}+4-3\sqrt{2}
Tāpirihia te 1 ki te 3, ka 4.
4
Pahekotia te 3\sqrt{2} me -3\sqrt{2}, ka 0.