Tīpoka ki ngā ihirangi matua
Manatoko
pono
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{\sqrt{2}\sqrt{2}}=\frac{\sqrt{2}}{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Tangohia te \frac{\sqrt{2}}{2} mai i ngā taha e rua.
0=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Pahekotia te \frac{\sqrt{2}}{2} me -\frac{\sqrt{2}}{2}, ka 0.
\text{true}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Whakatauritea te 0 me te 0.
\text{true}\text{ and }\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0
Tangohia te \frac{\sqrt{2}}{2} mai i ngā taha e rua.
\text{true}\text{ and }0=0
Pahekotia te \frac{\sqrt{2}}{2} me -\frac{\sqrt{2}}{2}, ka 0.
\text{true}\text{ and }\text{true}
Whakatauritea te 0 me te 0.
\text{true}
Ko te kōmititanga tōrunga o \text{true} me \text{true} ko \text{true}.