Aromātai
\frac{\sqrt{10001}+10}{9901}\approx 0.011110494
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{10001}+10}{\left(\sqrt{10001}-10\right)\left(\sqrt{10001}+10\right)}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{10001}-10} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10001}+10.
\frac{\sqrt{10001}+10}{\left(\sqrt{10001}\right)^{2}-10^{2}}
Whakaarohia te \left(\sqrt{10001}-10\right)\left(\sqrt{10001}+10\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{10001}+10}{10001-100}
Pūrua \sqrt{10001}. Pūrua 10.
\frac{\sqrt{10001}+10}{9901}
Tangohia te 100 i te 10001, ka 9901.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}