Aromātai
4
Tauwehe
2^{2}
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 1 } { \sqrt { 10 \times 10 ^ { - 3 } \times 6.25 } } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\sqrt{10^{-2}\times 6.25}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 1 me te -3 kia riro ai te -2.
\frac{1}{\sqrt{\frac{1}{100}\times 6.25}}
Tātaihia te 10 mā te pū o -2, kia riro ko \frac{1}{100}.
\frac{1}{\sqrt{\frac{1}{16}}}
Whakareatia te \frac{1}{100} ki te 6.25, ka \frac{1}{16}.
\frac{1}{\frac{1}{4}}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
1\times 4
Whakawehe 1 ki te \frac{1}{4} mā te whakarea 1 ki te tau huripoki o \frac{1}{4}.
4
Whakareatia te 1 ki te 4, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}