Aromātai
\frac{\sqrt{5}}{5}+2\approx 2.447213595
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\sqrt{5}}-4\times 0+2
Tāpirihia te 0 ki te 5, ka 5.
\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-4\times 0+2
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{5}}{5}-4\times 0+2
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{5}}{5}-0+2
Whakareatia te 4 ki te 0, ka 0.
\frac{\sqrt{5}}{5}-\frac{0\times 5}{5}+2
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 0 ki te \frac{5}{5}.
\frac{\sqrt{5}-0\times 5}{5}+2
Tā te mea he rite te tauraro o \frac{\sqrt{5}}{5} me \frac{0\times 5}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\sqrt{5}}{5}+2
Mahia ngā whakarea i roto o \sqrt{5}-0\times 5.
\frac{\sqrt{5}}{5}+\frac{2\times 5}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{5}{5}.
\frac{\sqrt{5}+2\times 5}{5}
Tā te mea he rite te tauraro o \frac{\sqrt{5}}{5} me \frac{2\times 5}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{5}+10}{5}
Mahia ngā whakarea i roto o \sqrt{5}+2\times 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}