Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{\sqrt{5}}-\left(4\times 0+2\right)
Tāpirihia te 0 ki te 5, ka 5.
\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\left(4\times 0+2\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{5}}{5}-\left(4\times 0+2\right)
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{5}}{5}-\left(0+2\right)
Whakareatia te 4 ki te 0, ka 0.
\frac{\sqrt{5}}{5}-2
Tāpirihia te 0 ki te 2, ka 2.
\frac{\sqrt{5}}{5}-\frac{2\times 5}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{5}{5}.
\frac{\sqrt{5}-2\times 5}{5}
Tā te mea he rite te tauraro o \frac{\sqrt{5}}{5} me \frac{2\times 5}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{\sqrt{5}-10}{5}
Mahia ngā whakarea i roto o \sqrt{5}-2\times 5.