Aromātai
\frac{n+3}{2\left(n-3\right)^{3}}
Whakaroha
\frac{n+3}{2\left(n-3\right)\left(n^{2}-6n+9\right)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{n+3}{n^{2}-6n+9}\times \frac{n+3}{2n^{2}-18}
Whakawehe 1 ki te \frac{n^{2}-6n+9}{n+3} mā te whakarea 1 ki te tau huripoki o \frac{n^{2}-6n+9}{n+3}.
\frac{n+3}{n^{2}-6n+9}\times \frac{n+3}{2\left(n-3\right)\left(n+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{n+3}{2n^{2}-18}.
\frac{n+3}{n^{2}-6n+9}\times \frac{1}{2\left(n-3\right)}
Me whakakore tahi te n+3 i te taurunga me te tauraro.
\frac{n+3}{\left(n^{2}-6n+9\right)\times 2\left(n-3\right)}
Me whakarea te \frac{n+3}{n^{2}-6n+9} ki te \frac{1}{2\left(n-3\right)} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{n+3}{\left(2n^{2}-12n+18\right)\left(n-3\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te n^{2}-6n+9 ki te 2.
\frac{n+3}{2n^{3}-18n^{2}+54n-54}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2n^{2}-12n+18 ki te n-3 ka whakakotahi i ngā kupu rite.
\frac{n+3}{n^{2}-6n+9}\times \frac{n+3}{2n^{2}-18}
Whakawehe 1 ki te \frac{n^{2}-6n+9}{n+3} mā te whakarea 1 ki te tau huripoki o \frac{n^{2}-6n+9}{n+3}.
\frac{n+3}{n^{2}-6n+9}\times \frac{n+3}{2\left(n-3\right)\left(n+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{n+3}{2n^{2}-18}.
\frac{n+3}{n^{2}-6n+9}\times \frac{1}{2\left(n-3\right)}
Me whakakore tahi te n+3 i te taurunga me te tauraro.
\frac{n+3}{\left(n^{2}-6n+9\right)\times 2\left(n-3\right)}
Me whakarea te \frac{n+3}{n^{2}-6n+9} ki te \frac{1}{2\left(n-3\right)} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{n+3}{\left(2n^{2}-12n+18\right)\left(n-3\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te n^{2}-6n+9 ki te 2.
\frac{n+3}{2n^{3}-18n^{2}+54n-54}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2n^{2}-12n+18 ki te n-3 ka whakakotahi i ngā kupu rite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}