Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{n+3}{n^{2}-6n+9}\times \frac{n+3}{2n^{2}-18}
Whakawehe 1 ki te \frac{n^{2}-6n+9}{n+3} mā te whakarea 1 ki te tau huripoki o \frac{n^{2}-6n+9}{n+3}.
\frac{n+3}{n^{2}-6n+9}\times \frac{n+3}{2\left(n-3\right)\left(n+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{n+3}{2n^{2}-18}.
\frac{n+3}{n^{2}-6n+9}\times \frac{1}{2\left(n-3\right)}
Me whakakore tahi te n+3 i te taurunga me te tauraro.
\frac{n+3}{\left(n^{2}-6n+9\right)\times 2\left(n-3\right)}
Me whakarea te \frac{n+3}{n^{2}-6n+9} ki te \frac{1}{2\left(n-3\right)} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{n+3}{\left(2n^{2}-12n+18\right)\left(n-3\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te n^{2}-6n+9 ki te 2.
\frac{n+3}{2n^{3}-18n^{2}+54n-54}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2n^{2}-12n+18 ki te n-3 ka whakakotahi i ngā kupu rite.
\frac{n+3}{n^{2}-6n+9}\times \frac{n+3}{2n^{2}-18}
Whakawehe 1 ki te \frac{n^{2}-6n+9}{n+3} mā te whakarea 1 ki te tau huripoki o \frac{n^{2}-6n+9}{n+3}.
\frac{n+3}{n^{2}-6n+9}\times \frac{n+3}{2\left(n-3\right)\left(n+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{n+3}{2n^{2}-18}.
\frac{n+3}{n^{2}-6n+9}\times \frac{1}{2\left(n-3\right)}
Me whakakore tahi te n+3 i te taurunga me te tauraro.
\frac{n+3}{\left(n^{2}-6n+9\right)\times 2\left(n-3\right)}
Me whakarea te \frac{n+3}{n^{2}-6n+9} ki te \frac{1}{2\left(n-3\right)} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{n+3}{\left(2n^{2}-12n+18\right)\left(n-3\right)}
Whakamahia te āhuatanga tohatoha hei whakarea te n^{2}-6n+9 ki te 2.
\frac{n+3}{2n^{3}-18n^{2}+54n-54}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2n^{2}-12n+18 ki te n-3 ka whakakotahi i ngā kupu rite.