Aromātai
198
Tauwehe
2\times 3^{2}\times 11
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 1 } { \frac { 1 } { 36 } - \frac { 1 } { 44 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\frac{11}{396}-\frac{9}{396}}
Ko te maha noa iti rawa atu o 36 me 44 ko 396. Me tahuri \frac{1}{36} me \frac{1}{44} ki te hautau me te tautūnga 396.
\frac{1}{\frac{11-9}{396}}
Tā te mea he rite te tauraro o \frac{11}{396} me \frac{9}{396}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{\frac{2}{396}}
Tangohia te 9 i te 11, ka 2.
\frac{1}{\frac{1}{198}}
Whakahekea te hautanga \frac{2}{396} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
1\times 198
Whakawehe 1 ki te \frac{1}{198} mā te whakarea 1 ki te tau huripoki o \frac{1}{198}.
198
Whakareatia te 1 ki te 198, ka 198.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}