Aromātai
\frac{20}{3}\approx 6.666666667
Tauwehe
\frac{2 ^ {2} \cdot 5}{3} = 6\frac{2}{3} = 6.666666666666667
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 1 } { \frac { 1 } { 10 } + \frac { 1 } { 20 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{\frac{2}{20}+\frac{1}{20}}
Ko te maha noa iti rawa atu o 10 me 20 ko 20. Me tahuri \frac{1}{10} me \frac{1}{20} ki te hautau me te tautūnga 20.
\frac{1}{\frac{2+1}{20}}
Tā te mea he rite te tauraro o \frac{2}{20} me \frac{1}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{\frac{3}{20}}
Tāpirihia te 2 ki te 1, ka 3.
1\times \frac{20}{3}
Whakawehe 1 ki te \frac{3}{20} mā te whakarea 1 ki te tau huripoki o \frac{3}{20}.
\frac{20}{3}
Whakareatia te 1 ki te \frac{20}{3}, ka \frac{20}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}