Whakaoti mō α
\alpha =2\pi +1\approx 7.283185307
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 1 } { \alpha - 1 } = \frac { 1 } { 2 \pi }
Tohaina
Kua tāruatia ki te papatopenga
1=\frac{1}{2}\left(\alpha -1\right)\pi ^{-1}
Tē taea kia ōrite te tāupe \alpha ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \alpha -1.
1=\left(\frac{1}{2}\alpha -\frac{1}{2}\right)\pi ^{-1}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2} ki te \alpha -1.
1=\frac{1}{2}\alpha \pi ^{-1}-\frac{1}{2}\pi ^{-1}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{2}\alpha -\frac{1}{2} ki te \pi ^{-1}.
\frac{1}{2}\alpha \pi ^{-1}-\frac{1}{2}\pi ^{-1}=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{2}\alpha \pi ^{-1}=1+\frac{1}{2}\pi ^{-1}
Me tāpiri te \frac{1}{2}\pi ^{-1} ki ngā taha e rua.
\frac{1}{2}\times \frac{1}{\pi }\alpha =\frac{1}{2}\times \frac{1}{\pi }+1
Whakaraupapatia anō ngā kīanga tau.
\frac{1}{2\pi }\alpha =\frac{1}{2}\times \frac{1}{\pi }+1
Me whakarea te \frac{1}{2} ki te \frac{1}{\pi } mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\alpha }{2\pi }=\frac{1}{2}\times \frac{1}{\pi }+1
Tuhia te \frac{1}{2\pi }\alpha hei hautanga kotahi.
\frac{\alpha }{2\pi }=\frac{1}{2\pi }+1
Me whakarea te \frac{1}{2} ki te \frac{1}{\pi } mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\alpha }{2\pi }=\frac{1}{2\pi }+\frac{2\pi }{2\pi }
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2\pi }{2\pi }.
\frac{\alpha }{2\pi }=\frac{1+2\pi }{2\pi }
Tā te mea he rite te tauraro o \frac{1}{2\pi } me \frac{2\pi }{2\pi }, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2\pi }\alpha =\frac{2\pi +1}{2\pi }
He hanga arowhānui tō te whārite.
\frac{\frac{1}{2\pi }\alpha \times 2\pi }{1}=\frac{2\pi +1}{2\pi \times \frac{1}{2\pi }}
Whakawehea ngā taha e rua ki te \frac{1}{2}\pi ^{-1}.
\alpha =\frac{2\pi +1}{2\pi \times \frac{1}{2\pi }}
Mā te whakawehe ki te \frac{1}{2}\pi ^{-1} ka wetekia te whakareanga ki te \frac{1}{2}\pi ^{-1}.
\alpha =2\pi +1
Whakawehe \frac{1+2\pi }{2\pi } ki te \frac{1}{2}\pi ^{-1}.
\alpha =2\pi +1\text{, }\alpha \neq 1
Tē taea kia ōrite te tāupe \alpha ki 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}