Aromātai
\frac{\alpha +\beta +\gamma }{\alpha \beta \gamma }
Tauwehe
\frac{\alpha +\beta +\gamma }{\alpha \beta \gamma }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\gamma }{\alpha \beta \gamma }+\frac{\alpha }{\alpha \beta \gamma }+\frac{1}{\gamma \alpha }
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \alpha \beta me \beta \gamma ko \alpha \beta \gamma . Whakareatia \frac{1}{\alpha \beta } ki te \frac{\gamma }{\gamma }. Whakareatia \frac{1}{\beta \gamma } ki te \frac{\alpha }{\alpha }.
\frac{\gamma +\alpha }{\alpha \beta \gamma }+\frac{1}{\gamma \alpha }
Tā te mea he rite te tauraro o \frac{\gamma }{\alpha \beta \gamma } me \frac{\alpha }{\alpha \beta \gamma }, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\gamma +\alpha }{\alpha \beta \gamma }+\frac{\beta }{\alpha \beta \gamma }
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \alpha \beta \gamma me \gamma \alpha ko \alpha \beta \gamma . Whakareatia \frac{1}{\gamma \alpha } ki te \frac{\beta }{\beta }.
\frac{\gamma +\alpha +\beta }{\alpha \beta \gamma }
Tā te mea he rite te tauraro o \frac{\gamma +\alpha }{\alpha \beta \gamma } me \frac{\beta }{\alpha \beta \gamma }, me tāpiri rāua mā te tāpiri i ō raua taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}